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Abstract

To allow planning in novel environments that have not been mapped out by hand,
we need ways of learning environment models. While conventional work has focused
on video prediction as a means for environment learning, this work instead seeks to
learn from much sparser signals, like the agent’s reward. In Chapter 1, we establish
a taxonomy of environments and the attributes that make them easier or harder to
model through learning. In Chapter 2, we review prior work in the field of environment
learning. In Chapter 3, we propose a model-learning architecture based purely on
reward prediction, and analyze its performance on illustrative problems. Finally, in
Chapter 4, we propose and evaluate a model-learning architecture that uses both
reward and sparse "features" extracted from the environment.
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Chapter 1

Problems in Deep Environment

Learning

1.1 Introduction

Model-free RL systems are limited by their reliance on policy-learning to choose

actions, foregoing the potentially powerful toolset of planning algorithms to method-

ically evaluate future possibilities. To be able to plan in unknown environments, we

must be able to acquire a simulator of the environment, to be used while planning to

evaluate the future consequences of current actions. One attractive framework is to

learn the environment simulator using familiar statistical techniques, e.g. deep learn-

ing. To facilitate the development of methods for learning to model RL environments,

we propose a series of benchmark tasks, each of which highlights a different aspect of

the problem.

We restrict our discussion to environments that have discrete timesteps and dis-

crete action-spaces. We define an environment as a tuple {S,A,O, 𝑃, 𝑉,𝑅} where

S is the space of environment states, A is the space of valid actions, and O is the

space of observations. 𝑇 is the transition function governing the evolution of the

environment over time, such that 𝑠𝑡+1 ∼ 𝑃 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡). Similarly, 𝑅 is the reward

function 𝑟𝑡 ∼ 𝑅(𝑟𝑡 | 𝑠𝑡, 𝑎𝑡) (note that the results of 𝑅 and 𝑇 are correlated). 𝑉 is

the observation function providing an observation 𝑜𝑡 ∼ 𝑉 (𝑜𝑡 | 𝑠𝑡). In general, given a
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current state 𝑠𝑡 ∈ S, a single "step" of the environment involves choosing an action

𝑎 ∈ A, transitioning the environment forward via 𝑇 and receiving a reward via 𝑅, and

then providing the agent with an observation using 𝑂. Note that the environment is

always Markovian w.r.t. the state — 𝑠𝑡 captures within it all information necessary

to predict the environment’s future state 𝑠𝑡+1.

The canonical environment-learning task, in its most basic form, is as follows:

given experienced observation/action trajectories {𝑜1, 𝑎1, 𝑜2, 𝑎2, . . . }𝑛, we wish to learn

a low-dimensional state representation 𝑠 for the environment. We know, per our defi-

nition of environments, that some such true state representation 𝑠 exists, but we know

nothing about 𝑠, and so instead we learn a proxy state space. Specifically, we wish

to find a state encoder 𝑥𝑡 = 𝐸(𝑜𝑡[, 𝑜𝑡−1, . . . ]), and a transition function on that state

representation 𝑥𝑡+1 ∼ 𝑇 (𝑥𝑡+1 | 𝑥𝑡, 𝑎𝑡). Other objectives include learning to extract

features from the state, like a "reward function" from 𝑥𝑡 to 𝑟𝑡, or a state-dependent

value function, or an inverse mapping back to the current observation 𝑜𝑡. Ultimately,

the goal is to use 𝐸 and 𝑇 to enable long-term planning in latent-space to improve

an agent’s performance.

1.2 Environment Characteristics

We can identify five characteristics of RL environments that provide different chal-

lenges for environment learning. These are:

∙ Transition stochasticity: environments with deterministic transitions al-

ways yield the same underlying state 𝑠𝑡+1 given the previous 𝑠𝑡 and 𝑎𝑡, whereas

stochastic transitions will draw this next state from a distribution of possible

states.

∙ Observation stochasticity: environments with deterministic observations

always yield the same observation 𝑜𝑡 given the state 𝑠𝑡, though there need not

exist an inverse mapping from 𝑜𝑡 to 𝑠𝑡. Stochastic observations yield different

𝑜𝑡’s for the same 𝑠𝑡.
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∙ Completeness of observations: environments are completely observable

if given a state 𝑠 and its resulting observation 𝑜, there is a unique inverse

mapping from 𝑜 back to 𝑠 (in other words, 𝑜 encodes all the information in 𝑠).

In partially observable environments, no such inverse mapping exists, though

one can be approximated by looking at multiple observations over time.

∙ State complexity: we describe few-state environments as those where the

size of the set of states S is finite and relatively small, and the environment

evolves by transitioning between these few states. On the other hand, in many-

state environments there can be a pseudo-infinite number of states, so that an

agent might reasonably encounter some states only a few times, if ever.

∙ Reducibilty of states while preserving reward: environments are reward-

reducible if maximizing the long term reward does not require knowledge of

the full state1, i.e. there exists some reduced state representation 𝑥𝑡 = 𝐽(𝑠𝑡),

𝑑𝑖𝑚(𝑥) << 𝑑𝑖𝑚(𝑠) which has a Markovian transition model 𝑇𝑥 and a reward

function 𝑅𝑥 that perfectly encapsulates the original environment’s reward dy-

namics (a sequence of actions results in the same distribution of rewards). If

predicting the reward requires the full state, and no such reduced state 𝑥 is

sufficient to predict future reward dynamics, the environment is said to have

reward-irreducible.

1.3 Sample Environments

Here we describe a set of novel environments, each of which displays a different

combination of the attributes discussed above.

1In this case, the "full state" refers to the "true" underlying state of the data generating process,
rather than any learned state representation
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1.3.1 MNIST-based Games

The primary approach to date for learning latent simulators is to train video prediction

algorithms [25, 7], which train models to simulate games forward to do pixel prediction

of future game images (in our notation, that means 𝑓𝑡 = 𝑜𝑡). While recent work

has begun considering stochastic video prediction [21], no current work has explored

action-dependent video prediction for stochastic environments.

The MNIST game formulation is intended to highlight this deficiency: all of these

environments use randomly drawn MNIST images to represent their underlying digit

observation, and thus exhibit the "stochastic observations" that are handled poorly

using current video-prediction methods.

Basic MNIST Game

In this simple game, the player’s observation is an MNIST digit image, and their ac-

tions are "+0", "+1", "x2", and "x3". The observation at the next timestep will be a

new MNIST image of the digit after the action’s operation was applied, modulo 10. A

reward of 1 is received when the player reaches "0", and every other transition yields

a reward of −.1. For example transitions, see Fig. 1-1. This environment is interest-

ing because it has stochastic observations, but is otherwise straightforward, having

deterministic transitions, few states, being reward-irreducible, and being completely

observable, .

Figure 1-1: Example transitions from the Basic MNIST Game. On top, 8 · 3
mod 10 = 4. On bottom, 5 + 1 mod 10 = 6

.
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Figure 1-2: Example transitions from the Fibonacci MNIST game. On top, 6− 2 = 4
mod 10. On bottom, 2 · 4 = 9 mod 10.

Fibonacci MNIST Game

In this MNIST game variant, the observations are once again MNIST digits, but

the actions are "+", "-", and "x", and the transition dynamics are slightly different.

Given the previous state’s underlying digit 𝑑𝑡−1, current digit 𝑑𝑡, and action 𝑎𝑡, the

next digit will be 𝑑𝑡+1 = 𝑑𝑡−1𝑎𝑡𝑑𝑡 mod 10. The objective, again, is to get to 0. For

examples, see Fig 1-2. This game has both stochastic observations and incomplete-

ness of observations (since the full state contains information not part of the current

observation), but still has stochastic transitions, few states, and is reward-irreducible.

Colored MNIST Game

This MNIST game variant is identical to the Classical MNIST Game, except that each

digit’s background also has one of the six primary colors (red, orange, yellow, green,

blue, violet). The number digit displayed is updated as before, but on "+1" actions

the background color will take a step along the list of colors (and if violet, loop back

around to red). Any action other than "+1" does not change the background color,

and the objective of the game is still to get to 0, regardless of color. For examples,

see Fig. 1-3. This environment has stochastic observations and is reward-reducible

(because the color is not relevant to achieving the goal of reaching 0), but still has

few states, deterministic transitions, and is completely observable.
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Figure 1-3: Example transitions from the Colored MNIST Game. On top, 2 + 1 = 3
mod 10 and the action is "+1" so the color moves one step along the rainbow from
orange to yellow. On bottom, 9 · 3 = 7 mod 10, and the action isn’t "+1" so the
color remains the same.

Figure 1-4: Examples of transitions from the Stochastic MNIST Game. On top, given
the choice of action "+1", there’s a 50% chance of the transition 5 − 1 = 4 mod 10,
and a 50% chance of 5 + 1 = 6 mod 10. On bottom, there’s a 90% chance of the
transition 7 + 3 = 0 mod 10, and just a 10% chance of the result being 7 − 3 = 4
mod 10.

Stochastic MNIST Game

In the final MNIST game variant, the observations are regular MNIST images, and

the actions are "0", "1", "2", and "3". Each action has a certain probability of

either adding that number or subtracting it - for example, "+1" is equally likely

to increment the current digit, or decrement it. The goal is still to reach 0. For

example transitions, see Fig. 1-4. This example has both stochastic observations and

stochastic transitions, while still being completely observable, reward-irreducible, and

having few states.
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Figure 1-5: Example of a gridworld observation. The agent (red) only receives a
reward when it reaches the objective (green).

Gridworld Maze

One further toy problem is the classical gridworld maze, in which the agent is placed

in an initially-random position, and must traverse through a maze of walls (constant

across game-instances) to reach a randomly-chosen objective. For an example, see

Fig. 1-5. Unlike in the previous examples, both the observations and transitions are

deterministic, the environment is fully observable, and the full state (the position of

both agent and objective) is necessary to predict the rewards. However, for a grid of

any reasonable size, there are many more random states than are likely to ever be

encountered.

1.3.2 Classical RL Tasks

We can also use our environment taxonomy to analyze several state-of-the-art RL

environment benchmarks, and quantify why planning makes them difficult. Example

observations from these tasks are shown in Fig. 1-6.

Pacman

The classic Atari game Pacman, in which the player navigates an agent through a

maze while avoiding enemies, is relatively simple with respect to our criteria. The

game certainly has a true underlying state (the RAM). The observations are determin-

istic functions of the state, and though the ghosts may seem to move stochastically,
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Figure 1-6: Classical reinforcement learning tasks. Top left: Atari PacMan. Top
Right: VizDoom. Bottom: robotic task and motion planning.

their motion is actually a deterministic function of the previous state, making the

transitions deterministic as well. The environment is completely observable (the im-

age alone is sufficient to recover state) and is reward-irreducible (if the state 𝑠 is

defined as the latent representation necessary for future image prediction). How-

ever, unlike with the toy examples, this is a many-state environment. The system

may never encounter most states during training, but must still generalize and at

test-time must be able to simulate unseen scenarios.

VizDoom

Like Pacman, the observations in VizDoom (a 3D shooter game in which the player

must navigate hallways and collect/avoid items) are fully deterministic, and under

most variants the the environment has deterministic transitions. However, the game is

only partially observable: the player’s gaze and position restrict the sliver of the game
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world they see at any given time. This means that a simulator will have difficulty

making predictions about a future which it does not have sufficient information to

infer (like the layout of hallways in a level it has yet to explore). As with Pacman,

the state complexity is potentially very high. In general, the environment is often

reward-reducible: for example, the full state may include the the positions of all the

apples and all the oranges, while the player might need only to collect the originals.

Robotic Task-and-Motion Planning

Learning a simulator for robotic motion problems requires tackling every single one

of the more-difficult environment characteristics. Transitions are stochastic because

the real world can evolve in multiple ways: a nearby human might take one of several

different actions in the next timestep, and even the action of raising a robot arm

has stochastic results due to actuator error. Observations are stochastic because the

robot will inevitably not model certain portions of the world (e.g. leaves rustling

outside the window), and the unmodelled components of the observation will seem

to evolve randomly. The robot will only ever be able to detect part of the world’s

state (due to occlusions and sensor-limitations), making the environment partially

observable. For most tasks, there are many more states than will ever be encountered

(many-state). Lastly, the environment’s full state (the state of the robot, as well as

of every other object/agent related to the task) is in general much more complicated

than is necessary for the completion of a single task (pouring the hot water from the

kettle right next to the robot into an adjacent mug), implying reward-reducibility.

Clearly, these challenges will have to be surmounted if robots are to learn to simulate

their environments to plan.
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Chapter 2

Related Works

2.1 Model Learning

In the past few years, substantial work has focused on the problem of learning a

model for environments. Embed-to-control [32] was among the first, and learned

a one-step prediction model for several control tasks. The input observation is an

image (encoded via an autoencoder), which is then simulated a few steps forward

via a linear transition model. We define a cost function for acting in this latent

space (rather than learning one), and then uses model-predictive control to choose a

trajectory. This system is capable of solving simple planning problems like swing-up

on an inverted pendulum or balancing a cartpole, but its most interesting aspect is

this: it allows for transition-stochasticity. By modeling the transition-model as a

mixture of Gaussians, and achieving latent-space self-consistency by minimizing the

KL-divergence between "true" latent states and "predicted" latent states, this paper

tackled a class of environment models that many subsequent papers have not yet

addressed.

Another class of model-learning algorithms centered around learning a model rep-

resentation useful for planning. These generally include a recurrent transition model

that takes as input a latent state and action and outputs a future latent state, and a

decoder of some sort. In Figure 2-1, we provide diagrams for many of the architectures

we’ll discuss in this section.
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Figure 2-1: Diagrams for the model-learning architectures in previous approaches.
(a) Oh et al. [25], (b) Chiappa et al. [7], (c) from same paper by Chiappa et al., (d)
Guzdial et al. [15], (e) Oh et al. [26], (f) Asai et al. [4].

Oh et al. [25] was the first paper to propose training each of these components as a

fully-differentiable neural network. Their approach learned a 1-step image prediction

model (where the decoder maps from a latent state to the pixels of the future image),

and repeated the one-step block for longer horizons to gain an environment model

for deterministic-transition, deterministic-observation, fully-observable environments.

They show good performance on an Atari environment and use the model to inform

an exploration stategy for a policy-learning algorithm.

Chiappa et al. [7] expand on this approach by training an environment model with

multiple transition steps. Their encoder takes in several frames to generate the ini-

tial latent state, making their algorithm viable in partially-observable environments

(which must still have deterministic transitions and observations). They propose two

different architectures. In the first, the model encodes the observation, simulates it

forward 𝑛 timesteps, and then decodes it back into an image. In the second more
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complex approach, the model encodes an observation, simulates it one timestep for-

ward, decodes it, and then re-encodes it and simulates it forward again, 𝑛 times.

They found that the latter approach worked better for pixel-level image prediction

over longer sequences, which they attribute to the repeated "grounding" of the latent

state in some sort of true image.

Much simpler model-prediction architectures were applied in the real world in

"Learning to Poke by Poking" [1]. First, the authors learn an encoder by training a

model to take two subsequent observations as input, encode both of them, and then

using that encoding to predict the action that occurred between them. Using this

encoding, they trained a simple one-timestep pixel prediction model. This was all

done on a real robot whose goal was to poke objects, and a simple one-step policy

using simulations from the learned model to maximize the displacement of the object

proved effective in their experiments.

Fundamentally, even highly-trained models will suffer from some level of inaccu-

racy, which will compound with longer prediction horizons. There is a danger, as seen

in Gu et al. [14], that planning agents will exploit the inaccuracies in these models

to generate plans that maximize an inaccurate reward signal. Weber et al. [33] pro-

pose a reinforcement learning algorithm that extracts useful information from flawed

models for use in a model-free policy learner. By training a flawed single-step model,

doing multiple rollouts of that model, and using the results of those rollouts as an

informative input to the policy network, the authors are able to attain good results

on complex planning-based domains like Sokoban.

Guzdial et al. [15] aim to learn a video-predictive model by essentially hand-

engineering an encoding. They inform the program about the different sprites in

the game Super Mario Bros., and then train their model to combine these sprites

to reconstruct the game observations on a pixel level. They then learn a transition

model for these high-level sprite representations, and are able to successfully plan in

the environment. This suggests a way of incorporating prior domain knowledge into

model-learning.

Another recent work by Oh et al. [26] proposed an entirely different framework
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for learning a model that, much like this current work, does away with image-

prediction and latent-state invertibility entirely. They train a model with an encoder,

an optional-conditional transition module, a reward-prediction module, and a value-

prediction module. The reward prediction module is used only to impose structure

on the learned latent space (much like our "features" in Ch. 4). The model is trained

using a modified form of Q-learning (where the predicted values are the output of en-

coding an observation, transitioning it forward, and then calling the value-extractor).

After training, the algorithm uses model-based planning to choose a trajectory that

maximizes its estimated final value, and are tested on a number of maze and Atari

planning tasks. The algorithm leverages the strength of a model-based structure for

forward-simulation, while still learning using model-free RL approaches, and in doing

so can leverage the benefits of both.

Another paper by Jonschkowski et al. [17] proposes learning a model for the en-

vironment that similarly does not require image reconstruction, but instead learns

a latent space consisting purely of position-velocity encodings by forcing the latent

space to obey a variety of real-world robotics priors. These include variation (random

frames should have different representations), slowness (positions should not change

quickly between frames), and inertia (velocities change slowly). The learned latent

state can then be used to fit a value function, and the approach was thus able to

solve several classical planning tasks directly from images. A more thorough study of

possible robotic priors for any physical latent space can be found in another work by

Jonschkowski [16].

Asai and Fukunaga [4] propose a method for model-learning that allows for classi-

cal PDDL planning in latent space. They train an encoder via an autoencoder with a

constraint to make the latent-space be almost-discrete, and use as a transition model

a lookup table of all possible transitions. By providing the algorithm with an initial

observation and a goal observation, the algorithm can use an off-the-shelf classical

planner to compute a plan using only the latent representations. However, the exper-

iments in this paper are only on observation-deterministic environments, and further

work is needed to demonstrate the viability of this approach in a broader class of
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environments.

2.2 Video Prediction

A related field to model-learning is video-prediction, the problem of predicting fu-

ture video frames given previous frames [30]. The two problem-types share many

challenges, with the only substantial difference being that video-prediction need not

consider actions or rewards.

One of the more interesting recent ideas in video prediction is adversarial video

generation [21]. As previously discussed, pixel-level MSE loss for video prediction does

not take into account the fact that the real world is stochastic, and that there are often

multiple ways for a video sequence to progress (rather than the single, observed way).

This paper uses the generative adversarial framework introduced by Goodfellow et

al. [13] to train networks that stochastically generate a video-sequence, and are then

critiqued by a discriminator which attempts to distinguish whether the predicted

future is likely to be true or not. This modification, in model-learning, would allow

learning in stochastic-observation environments (including e.g. the MNIST game).

However, a single adversary might not be sufficient to learn stochastic-transition

models, in which each timestep branches stochastically into future timesteps in proba-

bility distributions of compounding complexity. Esteban et al. [12] attempt to address

this problem by learning a stochastic time-series using adversarial losses for predic-

tions in each timestep. In order to stabilize the learning process, they used a form

of curriculum learning in which the number of predicted steps was slowly increased.

While the work shows initial progress, more results are needed to explore the viability

of a compounding adversarial approach in estimating environments with complicated

stochastic transitions.

Villegas et al. [31] address another aspect of video-prediction that is related to

our work: high-level feature spaces. By utilizing the known high-level structure of

the process, they are able to train a model to predict future video frames much more

accurately. Specifically, the authors extract body pose position (using a pretrained
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neural net) from frames, predict those pose positions into the future, and then decode

those images back into real images. This work also uses an adversarial loss to construct

video without requiring that the model adhere to the original video.

Denton et al. [10] learn a video-predictor which explicitly disentangles different

components of the latent representation. By imposing a custom adversarial loss, the

model is forced to learn video "content" in one component of the latent space, and

intra-video "pose" information in the rest.

One related area of interest is physics approximation networks [5, 6], a class of

models that aims to explicitly learn physical transition dynamics for objects by mod-

eling each object’s collision with each other object separately. Perez et al. [29] extend

this idea to video-prediction, using the prediction network to anticipate the motion

of many 2D objects in a simulated scene.

Similarly, Wu et al. [34] use a pre-built classical game physics engine as a transition

model, and learns a mapping from real object states to components in the physics

simulator. To train, the model forces an encoder to provide the physics engine with

a problem specification that will yield a video similar to the one that followed in the

real world. While this requires highly accurate simulators, it also yields a thoroughly

interpretable feature space (which can be immediately used by the same physics

simulator in many different ways).

2.3 Alternative Approaches to Learning Models for

Reinforcement Learning

There are many interesting applications for learning models to be used in contexts

other than classical action-planning. Gu et al. [14] use an iteratively-fitted time-

varying linear model to approximate the dynamics. They then generated simulated

trajectories and provided them as input to a model-free RL algorithm, allowing the

algorithm to artificially generate more data for itself and thus utilize less data to

achieve comparable results.
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Similarly, Munk et al. [23] leveraged model-learning to extract useful features for

model free planning. The authors trained a simple one-step observation predictor and

one-step reward predictor model, both neural networks, and then used the combined

first layers of each model as the first layer of a model-free RL algorithm to learn

a feature-representation to reduce the parameter-complexity, and thus require fewer

examples to yield a good policy.

Dosovitsky et al. [11] attempt direct long-horizon future feature prediction without

a recurrent component. They train an RL agent on-policy to complete a certain task,

and then train a CNN to estimate, given each possible action, the value of certain

measurements (rewards) far into the future given the current policy. The policy

chooses the action with the highest expected associated reward. Training the long-

horizon reward predictor in this way does eventually stabilize, and is even able to

perform well on tasks in non-trivial 3D game environments.

Finally, Karkus et al. [18] learn a transition model specifically for the POMDP-

solving QMDP algorithm. The "model" consists of the spatial transition kernel

weights, which are then applied iteratively using the QMDP algorithm. The ob-

jective is to minimize the imitation cross-entropy loss between an expert’s chosen

trajectories and the trajectories generated using the learned-model QMDP planner.

Interestingly, the model learns a transition structure that is inaccurate, but tuned to

be utilized well by the planning algorithm (which is not optimal).
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Chapter 3

Model-Learning as Reward Prediction

3.1 Introduction

In this chapter, we will discuss a novel approach to predictive learning that relies

purely on reward prediction. Predictive learning is an alternative to model-free rein-

forcement learning, though both have the same goal: to train agents that can choose

actions in novel environments to maximize an objective. Model-free RL seeks to learn

a successful policy 𝑎 ∼ 𝜋(𝑠) without truly understanding the environment. In con-

trast, predictive learning seeks to learn a transition model 𝑠, 𝑟 ∼ 𝑇 (𝑠, 𝑎) to explain

the environment’s behavior, and then uses this model to foresee the results of its

actions and choose the best action accordingly.

These two approaches can be understood by analogy to human learning. When

learning to swim, a child initially does not know how to push her body forward, and

may fall down. By trial, error, and instruction, she learns a strategy to move forward

in the water. Yet afterwards, if we asked her to tell us what would happen if she

only used one foot, she might not know. This is because she has learned a policy

for swimming, not an environment model for her body in the pool. On the other

hand, if we were to give the same child a paintbrush and ask her what would happen

if she moved her hand in each of several different patterns, she could accurately guess

the shapes that would result on the paper without having laid down any paint. This

is because she has learned an environment model for painting.
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This notion of learning environment models has been explored primarily in the

context of video-prediction, where the observations are images [25, 7, 21, 31]. These

approaches generally have the same few model components. There is an encoder

𝐸(𝑜𝑡) → 𝑠 mapping a high-dimensional observation (like an image) to a simple latent

state, a transition-model 𝑇 (𝑠𝑡) → 𝑠𝑡+𝑖 simulating the latent state forward, and a

decoder 𝐷(𝑠𝑡+𝑖) → 𝑜𝑡+𝑖 mapping back from a latent state to an observation (or an

image). The training objective is either the observation reconstruction loss (pixel-

value MSE) or an adversarial loss (inability of an adversary to distinguish between

real and generated future observations).

All of these approaches have the same flaw: they aim to learn an embedding (and

associated transition model) complex enough to perfectly reconstruct every part of the

state space, by regenerating a complete image/observation. Training a decoder alone

to generate high-dimensional images from a sparse vector would be challenging on its

own. However, there are many instances in which such a detailed environment model

is even unnecessary, or simply unlearnable. Imagine predicting pedestrian behavior

as a self-driving car: while it is vital to be able to guess the future location of a

pedestrians, it should not be necessary to encode the shape of a man’s stroller or the

patterning on his backpack. Yet such features are given roughly equal weight when

the learner’s goal is pixel-level video-prediction. Our real intended objective, which

pixel-prediction serves as a proxy for, is to predict the evolution of the higher-level

features of the environment.

This work aims to approach the environment-learning problem from the opposite

direction: by predicting the future reward, rather than future environment observa-

tions. The model still learns an encoder and a transition model, but replaces the

image decoder with a "goal decoder", which extracts the goal value from the cur-

rent state. When trained, this model should learn some reduced1 representation of

the state that is necessary to evaluate the reward at the present and in the future.

Ultimately, when planning, the most important thing as that the model accurately

1Any "reward-reducible" environment (per Chapter 1) will be modeled using the simplest state
the learner finds satisfactory.
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predict the goal, and this allows us to optimize for such behavior directly. Further,

the latent representation need not be invertible back to a complete image observation,

and so can be simpler and sparser (a major difference from image-prediction-based

approaches). We thus avoid the need to learn to model complex and irrelevant aspects

of the environment. Finally, the model learns to extract not only features necessary

for calculating immediate reward (e.g. am I currently colliding with a pedestrian?),

but also features that predict reward in future timesteps (is the pedestrian currently

on a path such that, if I keep the pedal to the metal, I will collide with him?).

Of course, such an approach is not without its drawbacks. First, such a model is by

its nature less adaptable to changing objectives/reward functions, since it only learns

to model the portion of the environment that is relevant to the reward function it’s

trained on. Second, the model must learn from an extremely weak signal. Rewards

are inherently sparse signals that may only occur infrequently, and may contain little

information content at that. ("Is the goal reached?" is a binary signal.) Relatedly,

the longer the time between an action and its effect on the reward, the more difficult

it is to determine how that action affected the state, and the weaker the learning

signal. Imagine trying to learn the rules of chess by repeatedly looking at a board

configuration, then leaving to another room and calling out your pieces’ moves. Your

only feedback is being told that "the game isn’t over", or you "won" or "lost". It

would be difficult to build any meaningful hypothesis for the rules of chess, let alone

a robust one.

To ameliorate the low-signal problem, we will introduce a few proposed auxiliary

losses that will provide more structure and signal to the latent space. First and

foremost, we force the latent state representations to be self-consistent: the current

latent state should be the same if extracted from the current observation, or from an

older observation simulated forward in time. In Chapter 4 we will predict pre-crafted

features in addition to the predicted reward, providing more signal to construct a

latent space while still forcing the algorithm to infer other important information

details. In Appendix A, we will explore the idea of requiring the latent state to

contain sufficient information for a classifier to distinguish between true and false
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environment transitions. As we introduce each of these objectives, we will discuss

how they each affect the learned latent environment representations, and why they

do or don’t make sense in different settings.

To clarify, the goal of this work is not to present reward prediction as a prac-

tical approach to training functional environment simulators2. Rather, our goal is

to explore the conceptual merit of a fundamentally alternative approach to learning

an action-conditioned environment state representation. The usual approach, most

prevalent in video prediction, is to require the model to learn a state representation

that can predict a ton of at-times irrelevant information about the environment (the

value of every pixel) and to hope that, in the process, it picks up the features that are

important. By contrast, our approach asks the model to predict information insuf-

ficient to even model the environment dynamics (e.g. the reward) and relies on the

learner to infer the rest of the state from that partial signal. Doing so, learning from

this weaker signal, is certainly a harder learning problem, but at the same guarantees

that the features we do learn are the ones we want, and it is worth understanding its

drawbacks and successes.

3.2 Problem Statement

We will now detail our precise problem statement. We are given an environment

with discrete timesteps and observations 𝑜𝑡, actions 𝑎𝑡, and a reward signal 𝑔𝑡. The

environment must have deterministic transitions (see Ch. 1.2) and must be fully-

observable, but can have stochastic observations (many different observations which

represent the same state). We are given access to historical environment trajectories

{(𝑜𝑡, 𝑎𝑡, 𝑔𝑡, 𝑜𝑡+1, 𝑎𝑡+1, 𝑔𝑡+1, . . . , 𝑜𝑡+𝑇 , 𝑔𝑡+𝑇 )1,...,𝑛}. To simplify our problem setting, we

make the reward a binary goal. 3

Our primary objective is to learn a model that, given a new observation 𝑜𝑡 and

2If you build a car that drives purely by reward prediction, please use a holdout set.
3The reward or "goal value" is 0 whenever we have not achieved the goal, and 1 when we have (at

which point the episode ends). We define goal satisfaction as a function of the state, rather than the
combined state and action. Relatedly, when specifying one of multiple goals, we provide a "target
observation" 𝑜𝑔 that indicates to the agent which goal it is aiming for.
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Figure 3-1: The layout of two steps of the reward prediction model. Circles with
solid borders are provided from the environment, while circles with dashed borders
are learned during training. Red lines denote pairs of elements whose distances to
each other are minimized.

a sequence of actions 𝑎𝑡, 𝑎𝑡+1, . . . , 𝑎𝑡+𝑇 predicts the value of goal at time (𝑡 + 𝑇 )

𝑔𝑡+𝑇 = 𝑓(𝑜𝑡, 𝑎𝑡, 𝑎𝑡+1, . . . ) that minimizes the cross-entropy −
∑︀

𝑖 𝑔
(𝑖)
𝑡+𝑇 log ̂︂𝑔𝑡+𝑇

(𝑖).

3.3 Model

We propose learning an environment simulator with three components: an encoder 𝐸,

a transition function 𝑇 , and a goal-extractor ("goaler") 𝐺 (see Fig. 3-1). The encoder

maps from the high-dimensional observation input 𝑜𝑡 to a learned low-dimensional

state representation 𝑥𝑡.4 The transition function 𝑇 (𝑥, 𝑎1, . . . , 𝑎𝑛) takes as input a

latent state and simulates it forward in time given a sequence of actions, resulting in

the estimated subsequent latent state. Finally, the goal extractor 𝐺(𝑥) takes as input

a latent state, and outputs the likelihood (between 0 and 1) that this latent state is

4As a reminder, the environment is fully observable and thus a sufficient state can be extracted
from just the observation. This assumption can be relaxed, as we discuss further in 3.6.
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a state that has achieved the goal. These functions are summarized in the notation

below:

𝑥𝑖
𝑡 = 𝐸(𝑜𝑖𝑡) (3.1)

𝑥𝑡+𝑗|𝑡
𝑖

= 𝑇 (𝑥𝑖
𝑡, 𝑎

𝑖
𝑡, 𝑎

𝑖
𝑡+1, . . . , 𝑎

𝑖
𝑡+𝑗) , ̂︁𝑥𝑡|𝑡

𝑖 = 𝑥𝑖
𝑡 (3.2)

𝑔𝑡+𝑗|𝑡
𝑖

= 𝐺(𝑥𝑡+𝑗|𝑡
𝑖
) (3.3)

During training, we break each episode’s experience into short subsequence of tran-

sitions (of length up to ℎ𝑚𝑎𝑥). Our primary training loss is, as previously mentioned,

the reward prediction loss for each timestep in each subsequence, defined as:

ℒ𝐺 =
1

𝑍1

𝑛∑︁
𝑖=1

ℎ𝑚𝑎𝑥∑︁
ℎ=1

𝑇 (𝑖)−ℎ∑︁
𝑡=0

ℎ∑︁
𝑗=1

−𝑔
(𝑖)
𝑡+𝑗 log 𝑔𝑡+𝑗|𝑡

(𝑖) (3.4)

where 𝑛 is the total number of training episodes, ℎ𝑚𝑎𝑥 is the maximum sequence

length the model is trained to predict at each time, 𝑇 (𝑖) is the total number of steps

in the 𝑖th episode, and 𝑍1 is the total number of terms in the loss. Note that we

break each training trajectory up into groups of different-length sequences (from 1 to

ℎ𝑚𝑎𝑥), and train on all of them. If we did not do this, and only provided sequences

of ℎ𝑚𝑎𝑥 steps, the network could learn that goals only occur exactly ℎ𝑚𝑎𝑥 steps after

the encoded image (because episodes end after the goal occurs, and so can only occur

at the end of a subsequence). This way, goals are interspersed at different timesteps

relative to the initial state.

However, minimizing this loss alone would fail to yield a meaningful model, be-

cause there is no guaranteed similarity between latent states from different runs. To

understand this issue, consider the following game. The first observation is always

𝑜1 = 1, and there is only one action which increments 𝑜𝑡 by 1, until 𝑜100 = 100 at

which point the goal is satisfied (𝑔101 = 1). However, during training, we only predict

training trajectory chunks of maximum length ℎ𝑚𝑎𝑥 = 5 consecutive actions. Then

any time the trainer ever sees examples 𝑜 = 10, or 𝑜 = 20, or 𝑜 = 94, it knows that

all 5 subsequent states will not achieve the goal — after all, only training trajectories

38



starting at 𝑜 = {96, 97, 98, 99, 100} would ever yield nonzero goals. Thus there is no

signal differentiating 𝑜 = 10 from 𝑜 = 20, and the encoder cannot learn to separate

them — so it cannot learn the correct game dynamics beyond the length of its training

trajectories.

To remedy this problem, we introduce a "latent consistency loss", which requires

that latent state representations not only be predictive of the future goal value, but

also be consistent between themselves. That is, the same state arrived at through

multiple different simulated paths should yield similar latent representations. More

formally, we minimize the mean squared error between an observation 𝑜𝑡’s true la-

tent encoding (computed via the encoder as 𝐸(𝑜𝑡)) and the encoding estimated by

simulating a previous encoding forward in time (see Eq. 3.2). That is,

ℒ𝐶 =
1

𝑍2

𝑛∑︁
𝑖=1

ℎ𝑚𝑎𝑥∑︁
ℎ=1

𝑇 (𝑖)−ℎ∑︁
𝑡=0

ℎ∑︁
𝑗=1

⃒⃒⃒
𝑥
(𝑖)
𝑡+𝑗 − ̂︂𝑥𝑡+𝑗

(𝑖)
⃒⃒⃒2
2

(3.5)

where 𝑍 is the total number of latent-pair terms in the loss. We combine these two

losses into one overall loss:

ℒ = 𝜆𝐺ℒ𝐺 + 𝜆𝐶ℒ𝐶 (3.6)

where 𝜆𝐶 and 𝜆𝐺 are hyperparameters defining the relative importance of the two

losses (and are 1, unless otherwise stated). To return to our earlier example game,

take the representation of 𝑥1 vs. 𝑥95. Previously, both yielded the same goal values

over 5 timesteps and thus were inseparable — though 𝑥96 would yield a goal state

after exactly 5 steps, and thus was distinguishable as its own state. Now, 𝑥95 leads to

𝑥96 after one timestep, whereas 𝑥1 does not — meaning that there is signal separating

the two states. In this manner, by bootstrapping the representation of each state’s

relative relationship to other states all the way back to those that are actually near

a goal, this entire game’s dynamics can be learned.

This "learning-by-bootstrapping" approach is the expected (and in practice ob-

served) learning sequence for much more complicated game dynamics. So long as

the environment’s underlying state has deterministic transitions (which guarantees

39



us that starting at the same state executing the same actions twice will yield us two

equivalent states), the state consistency loss can in theory infer an arbitrary transi-

tion graph. Of course, the farther away a state is from any goal states, the longer

the network must train (and learn each intermediate state) before it can identify the

faraway state, and the weaker its training signal. In our experiments, we will show

that this approach works for short-horizon environments, but breaks down over longer

horizons and more complicated transition models.

To understand the behavior of such an optimization, one must understand that

the two goals — "predicting rewards" and "ensuring similar states are near each other

in latent space" — are fundamentally at odds. This is because the trivial solution for

the latter latent consistency loss is that all states have the same latent representation.

This immediately reduces the latent loss to zero, and is a powerful local minimum:

any differentiation at all between states for the purposes of reward-prediction needs

to be more-than-worth its cost in resulting distance between that and every other

state (and in our experience, systems do not escape this mode once it has occurred).

This phenomenon, latent collapse, was observed empirically whenever 𝜆𝐶 was raised

too high (and generally makes training systems with sparse reward signal difficult).

Because all state representations are constructed relative to the goal states, it is

particularly vital that the model accurately identify which states are goal states. In

certain environments, especially those with longer horizons, such states may occur

infrequently. If a game last on average 20 steps, but our training chunks are of size 2,

it would be very rare for a chunk to contain a nonzero goal — making the only effective

loss term the latent consistency term, and making latent collapse all but certain. To

specifically avoid this scenario and boost the goal signal strength in environments

with rare goal-achievements, we optionally introduce a 0-step goal-boosting loss:

ℒ𝐺𝐵 =
1

𝑛

𝑛∑︁
𝑖=1

−𝑔
(𝑖)

𝑇 (𝑖) log ̂𝑔𝑇 (𝑖)|𝑇 (𝑖)
(𝑖) (3.7)

where 𝑛 is the number of training episodes and 𝑇 (𝑖) is the last timestep of each training

episode. (If there are episodes that end without reaching the goal, we discard them.)
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In effect, we are training the model specifically to recognize goal states as a sort of

auxiliary training signal5. Our final loss function is thus:

ℒ = 𝜆𝐺ℒ𝐺 + 𝜆𝐶ℒ𝐶 + 𝜆𝐺𝐵ℒ𝐺𝐵 (3.8)

3.4 Methodology

3.4.1 Architecture

Figure 3-2: A diagram of the full prediction pipeline, for 3 transition timesteps and
with stacked recurrent units. From left to right: an observation 𝑜𝑡 is encoded using
𝐸 into 𝑥𝑡, which is concatenated with 0s and passed as the initial latent state of the
RNN. The RNN takes actions as inputs and combines these with the initial latent
state to compute the subsequent latent states. Up top, the goaler 𝐺 is used to extract
estimates for 𝑔𝑡, 𝑔𝑡+1, . . . from latent states.

Our encoder, transition-model, and goaler were all implemented as deep neural

networks. The encoder 𝐸 is charged with extracting a low-dimensional state from
5Of course, optimizing the goal-boosting loss alone would make the goal-predicter always guess

the goal were achieved, so it must be trained in conjunction with the regular goal-prediction loss,
which will have many more goal-not-achieved examples.
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a high-dimensional, spatially structured image. To that end, it has 3 convolutional

layers, with each layer having 32 filters of size (5,5) and stride (2, 2), followed by an

exponential-linear nonlinearity [9]. The encoder’s last layer is a fully-connected layer

reducing the output dimension to a latent state of size 128.

The transition model 𝑇 is a recurrent neural network whose hidden state is the

latent environment state, and whose inputs are actions. Our network used Gated

Recurrent Units [8] with tanh nonlinearities, which have the same "output" and

"hidden state"6 (unlike LSTMs). The initial hidden state of the RNN is the initial

latent state 𝑥𝑡. One possible drawback is that we only have a single hidden layer

of nodes for each recurrent unit. We experimented with increasing the network size

by using a stacked RNN [27] which adds more representational capacity by feeding

lower-layer outputs of the RNN as higher-layer inputs. In this case, our latent state

was the output of the highest layer, and the initial hidden state was 𝑥𝑡 concatenated

with an appropriate number of 0s (as the initial states of the lower layers), allowing

the network to do more complex calculations on strings of actions. However, unless

otherwise noted, the experiments used a single RNN layer.

The goal-extractor 𝐺 is a simple network with one fully-connected layer with 256

nodes followed by an exponential linear unit, and then a fully-connected layer leading

to a single unit, whose output is run through a sigmoid (and represents the goal

value).

3.4.2 Environments

Our chosen environments are all based on the same underlying principle: we want to

test how well our model learns to construct a latent representation of the environment,

from the reward alone. To that end, we want to create environments with simple

latent representations that are difficult to extract from the observation (and therefore

require a lot of signal to perceive). We also want a relatively simple transition model

6This is desirable because we would like the network to output the latent state at each timestep,
and also be able to then take that latent state and continue simulating the state forward (like a
hidden state).
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and goal function, so that learning these components is relatively straightforward.

We chose to work with discrete actions and state spaces to be able to clearly capture

the ability of the model to segment the state space.

To that end, we experimented with two variants of the MNIST game (originally

introduced in Chapter 1). As a reminder, the game’s observations are MNIST digits

(28 · 28 black-and-white images with pixel values normalized to be between 0 and 1),

randomly generated based on the current "true" underlying state, which is a digit

from 0 to 9. We will explore the behavior of the model in learning two variants of the

MNIST game, "linear" and "complex", which differ in their transition structure. In

both variants, the goal is achieved when the the internal digit becomes 0.

The "linear" variant of this game has only two possible actions: "+1" and "-

1" (where e.g. "+1" means "add one to the current digit, modulo 10"). Thus the

environment is a slightly more complicated version of the earlier thought-experiment

about the game with 100 states and 1 action. This environment is interesting because

its transition structure is extremely simple (the numbers can be thought of as a ring,

where reaching either end achieves the goal). Yet each state leads to a reward pattern,

that is, executing any sequence of actions that reaches a goal will distinguish the

original state from every other original state (because each other state would be a

different distance from the end 0s).

The "complex" variant, on the other hand, has an intentionally complicated re-

ward structure, with actions "+0", "+1", "x2", and "x3". The visit frequency is

no longer uniform in this game: 1 only occurs as an initial state or from a 7 that

is multiplied "x3". Similarly, 0 (the goal) can only be reached by getting to 5 and

multiplying by 2, or getting to 9 and adding 1. Similarly, the distribution of states

is "stickier" and more locally-consistent: even numbers tend to follow even numbers

because "x2" always moves from odd to even (unlike the other actions which are

symmetric w.r.t. evenness). These different state distributions should lead to a more

complicated task as far as learning latent spaces is concerned.
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Figure 3-3: A pair of example transitions from the

3.4.3 Training

We train each algorithm for 5000000 training batch steps, using the Adam opti-

mizer [19] with step-size 𝜇 = 10−4. The trainer is provided roughly 5000 sample

games, though only has access to 500 at a time (the games are kept in a buffer,

with 10 new games replacing old ones every 10000 batch steps). To generate sam-

ple trajectories from each environment, we randomly sample actions until the goal is

achieved.

3.4.4 Metrics

We will use four metrics for our models. The first is a latent-space visualization based

on Google’s TensorBoard application. The model is given a set of 1024 trajectories

(𝑜𝑡, 𝑎𝑡, 𝑜𝑡+1 . . . sequences) and asked to generate the predicted future latent repre-

sentations given the first image and the sequence of actions. Then for each timestep,

we take all the latent states in that timestep, and reduce their dimensionality using

PCA (principle component analysis). We then project each of the points (and its

corresponding ground-truth observation) in 3D using the 3 most important dimen-

sions from the PCA. Doing so, we can get a quick visual representation of the learned

factoring of the latent space.

The second metric is a measure of the extent of state cluster formation. We would

ideally like each group of observations corresponding to a certain real-world state to
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be grouped together (and easily separable) in latent space. To measure whether this

has occurred, we run a clustering algorithm on a set of 1024 128-dimensional latent

states generated by passing observations through the encoder 𝐸. Specifically, for

the MNIST game experiment, we run the KMeans++ [3] algorithm with 10 clusters

(because there are 10 expected classes) and 100 random seeds for up to 300 steps each.

The best-generated clustering defines the "best" grouping of the latent space into 10

chunks, which ideally would be the 10 classes. We then compare this classification to

the true classification of each state by calculating their normalized mutual information

score (NMI) [22]. The NMI is a symmetric measure of the similarity of two categorical

distributions, which is agnostic to group membership. 7 One can permute the labels

of the classes without changing the measure of the metric, which is important because

we do not know which kmeans clusters correspond to which real-world classes. This

metric in a sense represents both how closely the components of each class have

clustered together, and how well the different classes are distinguished in latent space.8

The third metric is the goal-value prediction loss. This is simply the average

cross-entropy loss of goal-value predictions after 𝑘 steps.

The last metric is the predictive accuracy of planning using the learned envi-

ronment model. We utilize the learned model with the following simple planning

algorithm. Given an initial environment state 𝑠𝑡 and a set of valid actions 𝐴, sim-

ulate a breadth-first search of all possible actions and their resulting latent states

up to a fixed horizon ℎ𝑝. Then look through all the visited latent states, choose the

latent state with the highest estimated goal-achievement accuracy, and then (in the

real environment) execute the sequence of actions that resulted in that latent state.

7To give some intuition for the metric: say I have 100 points 𝐴, split into 10 different classes (0
to 9). I construct 𝐵, which has only 2 classes, by taking the class of 𝐴 modulo 2. 𝐴 and 𝐵 are two
alternate labellings of the same set of points, and will have an NMI score around 0.5 — that is, if
you can correctly segment the points into just two mega-classes (comprised of the original 10), you
already get to 0.5. Similarly, if 𝐶 results from the previous procedure except modulo 3, the NMI
score would be around 0.67.

8Of course, there exists the problem that the neural network might use a feature representation
that is not based on spatial proximity, and thus would not be captured by the kmeans-generated
clusters. However, because the spatial-consistency loss specifically penalizes state representations
based on how far same-class latent states are from each other, this is not likely. This was borne out
empirically (by inspecting the latent visualizations).

45



Because our test games (both the "linear" and "complex" MNIST variants) can be

solved in at most 5 moves from any initial state, we chose the planning horizon to be

ℎ𝑝 = 5. Note that this metric evaluates a weaker condition than the goal-prediction

loss. Goal estimates need not be precise to generate a good plan, only properly or-

dered. So long as at least one goal-achieving state are assigned higher predicted goal

likelihood than all non-goal-achieving states, the plan will succeed. Still, this metric

is important as it quickly demonstrates the true usefulness of the learned model.

3.5 Experiments and Results

3.5.1 Visualizing the Learned Representation

We will first dive into the properties of a single learned model. We trained a model

with a single recurrent layer and 𝜆𝐶 = 𝜆𝐺 = 1 to predict 3-step subtrajectories in

the linear MNIST environment. Note that using only 3-step sequences is significant,

because that means that no subtrajectory beginning in state {4, 5, 6} will ever net a

reward. The resulting latent space is visualized in Fig. 3-4.

We first can observe that in the 0th timestep (after no actions) the model has in

fact learned to segment the state space into the different MNIST digits based only on

reward. This suggests that there is on some level sufficient signal in this architecture

to learn simple feature-spaces. Even the 4s, 5s, and 6s are relatively segmented and

separated from each other, implying that the latent consistency loss is propagating

signal to states that do not directly encounter rewards. We can also note that this

latent structure is mostly preserved for the two subsequent timesteps (after 1 and 2

actions), though some morphing occurs (the 5s spread out across most other classes,

suggesting that its transition model is poorly-learned). Finally, in the last timestep,

the latent space appears to collapse, with the overall classes shearing into multiple

parts (despite the latent-consistency loss that should be pushing them together) and

generally melding with other classes. The only classes that are clearly identifiable

are the 0s and perhaps 1s, which is what we’d expect — after all, 0s are the goal-
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Figure 3-4: The post-PCA embedding visualization of a trained MNIST-linear learner
(each class is marked a different color, though the learner is never provided the images’
true classes). Top left is the set of initial latent states, top right the set of latent
states computed by simulating the latent state forward by one action, bottom left is
after simulating forward 2 actions, and bottom right is after 3 actions. (Note that
the bottom right’s group colorings are shifted by 1, so that e.g. red corresponds to
3 → 2.)

states, and the learner’s primary objective is to accurately predict whether a goal has

occurred at exactly a 3-step horizon. The latent consistency loss proves secondary at

this final timestep.

We can watch this particular evolution more granularly by looking at the embed-

ding space of just two classes, 3 and 4, in Fig. 3-5. We can immediately observe

that the classes begin segmented, and slowly become less separated until they merge

completely in the final frame. This makes sense — the classes are only separable

by reward prediction in the 0th timestep (because three "-1" actions would bring a
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Figure 3-5: The post-PCA embedding visualization of two classes (3 and 4 from a 3-
step-subsequence linear-MNIST model. Top left is after 0 timesteps, top right is after
1 timestep, bottom left is after 2 timesteps, and bottom right is after 3 timesteps.
(Note that the bottom right’s group colorings are shifted.)

3 to a goal state, but not a 4). It is interesting that in later timesteps the clusters

become multimodal, for example in the second timestep there are two clusterings of

4s. While this might be exacerbated by the particular coordinate-shift of the PCA,

it is still notable that the latent consistency loss — which should be pushing all 4s to

the same location in latent space — is not bridging between these two groups.

In subsequent sections, we will explore the performance of the model across mul-

tiple timesteps. It is useful to understand, on average, how many timesteps appear

in a given episode. This graph for the linear-MNIST environment can be seen in Fig.

3-6. We can see that the "linear" variant tends to have slightly shorter games than

the "complex" variant.
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Figure 3-6: Lengths of the 3000 episodes of a random agent acting in the (left)
linear-MNIST and (right) complex-MNIST environments that were used to evaluate
the models.

3.5.2 Varying the Latent Consistency Loss

To probe the usefulness of the latent consistency loss, we retrained the model with all

the same parameters, except this time removing that loss (𝜆𝐶 = 0). The embeddings

for the first few timesteps are shown in Fig. 3-7. We can observe the latent states

increasingly collapse into each other almost immediately after the first timestep, re-

flecting the fact that the model has failed to learn a transition model for the states

which cannot reach the goal within the remaining steps (out of 3). However, remark-

ably, the initial latent space (at the 0th timestep) appears much better segmented

than the one with the latent consistency loss. That might make sense for the classes

distinguishable by differing reward: there is no longer a latent-consistency loss push-

ing various latent representations together, so the model optimizes the latent space

more directly for reward prediction, and thus identifies the classes better. However,

the truly strange result is that the 4s, 5s, and 6s are almost perfectly segmented from

each other as well, despite having no observable difference in reward. This seems

to be a property of the MNIST dataset: sufficient training to identify most of the

MNIST digits, without signal regarding the other digits, causes the neural network

to automatically segment the other digits. 9

To further explore the usefulness of the latent consistency loss (or lack thereof),

we ran a series of experiments varying the latent consistency parameter 𝜆𝐶 between

9That is, the network learns that "the best way to identify which digit isn’t a 4, 5, or 6 is to
identify 4s, 5s, and 6s, and then rule them out. We separately validated this phenomenon by training
a simple MNIST classifier with the labels for 4, 5, and 6 all set to 4. In the resulting embedding
space, the 5s and 6s separated from the 4s despite no labels separating them.
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Figure 3-7: The post-PCA embedding visualization from a 3-step-subsequence linear-
MNIST model with no latent consistency loss. Top left is after 0 timesteps, top right
is after 1 timestep, bottom left is after 2 timesteps, and bottom right is after 3
timesteps. (Note that the bottom right’s group colorings are shifted.)

1 and 10−6. Each run learned from 3-step action sequences, and used goal-boosting

with 𝜆𝐺𝐵 = 0.5. The results are displayed in Fig. 3-8. From the bottom figure,

we can observe that all of our models have very accurate reward-consistency losses

for the first 3 steps (corresponding to the length of sequences they were trained on).

Afterwards, however, the quality of the reward predictions decreases substantially —

with the models with higher latent consistency showing slightly better generalization

to more timesteps.

On the top of Fig 3-8, as we’d expect, the quality of the clustering of the data

decreases as the number of transitions increases. Interestingly, as the latent consis-

tency parameter decreases, the quality of the clusters increases. This makes sense if

"latent consistency" and "goal-prediction" are competing objectives, and improving
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Figure 3-8: (Top) The Normalized Mutual Information score for the clusterings of the
latent state representations for each timestep in a 3-step 1-transition-layer model of
the linear-MNIST environment, varying the latent consistency scalar 𝜆𝐶 . (Bottom)
The goal-prediction cross entropy for the same models. We compare these models
with the "wfeatures" model, which can be thought of as a benchmark on the upper
limit of this architecture’s representation capacity. It is trained for 8 timesteps and is
asked during training to predict the true state label; for further details, see Chapter
4.

on latent consistency comes at the cost of short-term latent space structure. However,

increasing the latent consistency loss fails to improve the overall latent segmentation

even in later timesteps. We repeated the experiment with a larger transition model

(3 stacked layers in the RNN rather than 1) and only 2 transitions per training step,
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and observed the same results (see Fig. 3-9).

Figure 3-9: The Normalized Mutual Information score of the clusterings of the la-
tent state representations for each timestep in a 2-step 3-transition-layer model of the
linear-MNIST environment. We compare these methods with a benchmark "wfea-
tures" algorithm, which can be thought of as a benchmark on the upper limit of this
architecture’s representation capacity.

To better understand this phenomenon, we ran a different experiment, again in

the MNIST linear environment and with a 3-layer RNN transition model trained

on 2-step training sequences. This time, we evaluated the latent-space of the models

(NMI score) only on sequences that began at state 5. In this case, because 5 is too far

away from the goal 0 and the algorithm was only ever trained on 2-step sequences, the

algorithm must construct latent representations from the latent consistency loss (as 3,

4, 5, 6, and 7 appear the same using the reward prediction loss alone). The results are

in Fig. 3-10. Exactly as we’d expect, the runs with higher latent consistency scalars

perform dramatically better at identifying and segmenting the latent states far from

the goal. The high-latent-consistency model’s performance does seem to decay beyond

two timesteps for which the model was trained, suggesting a lack of generalization

to longer horizons (which is similarly observable in Figs. 3-8 and 3-9). Overall,

this experiment does seem to offer an explanation for the worse latent-segmentation

performance of models with higher latent-consistency. The models optimizing only

reward-prediction had good latent-space segmentation for a few of the states, and
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Figure 3-10: The Normalized Mutual Information score of the clusterings of the latent
state representations for each timestep, with sequences always starting at state 5, for
a 2-step training sequence 3-transition-layer model of the linear-MNIST environment
with varying 𝜆𝐶 . Note that step 0 is omitted because the class is always the same.
We compare these methods with a benchmark "wfeatures" algorithm, which can be
thought of as a benchmark on the upper limit of this architecture’s representation
capacity. It is trained for 8 timesteps with perfect state features; for further details,
see Chapter 4.

very poor segmentation for others (e.g. state 5), while the models with higher latent-

consistency had moderately good latent segmentation across all states.

3.5.3 Varying the Training Sequence Length

In a separate set of experiments on the both the linear and complex MNIST environ-

ments, we varied the length of action sequences provided to the model during training.

Each model had a 1-layer RNN transition model, a latent consistency scalar 𝜆𝐶 = 1,

and no goal-boosting 𝜆𝐺𝐵 = 0. The results are shown in Fig. 3-11. From the top

figures, we can clearly observe that increasing the training horizon length improves

the quality of the latent-space structure, even far beyond the training horizon. In the

linear MNIST case (left) there is notably a substantial improvement after 5 timesteps
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Figure 3-11: The (top) latent clusterings’ Normalized Mutual Information scores
and (bottom) goal-prediction cross entropy for each timestep in a 1-transition-layer
model of the (left) linear-MNIST environment and (right) complex-MNIST envi-
ronment, varying the length of training sequences shown to the algorithm.

or greater. This is precisely the sequence length necessary to possibly reach a goal

from every state, which means that the latent consistency loss is no longer principally

to segment the space. Oddly, over time, all the linear-MNIST models appear to con-

verge to roughly the same quality of latent space (though this does not imply they

have the same predictive quality, per the bottom of the figure, so perhaps this is a

shortcoming of our clustering + NMI-score measurement approach).

In the bottom of Fig. 3-11, we can see that the models’ ability to generalize

to longer-horizon reward prediction substantially improves with each extra training

transition. This makes sense: as the model is forced to predict latent representations

and goals farther away from the original image, it must improve its transition model
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(which is repeated a greater number of times). It seems that for the linear environ-

ment, the goal-prediction quality saturates around 5- or 6-step sequences, which as

previously suggested is the the length at which all states can reach a goal. In the

complex-transitions environment, adding longer sequences continues to yield benefits

for longer horizons even up to 8 transition steps, implying that none of these models

have completely "solved" a stable structure for the environment. The fact that most

of the models have a converging long-term reward loss might be a result of these

models’ eventually breaking down and predicting a constant likelihood for the goal.

3.5.4 Varying the Goal-Boosting Parameter

Finally, we ran an experiment on the linear-MNIST environment in which we varied

the training sequence length with and without the goal-boosting loss (𝜆𝐵𝐺 = {0, 1
2
}).

The results are visible in Fig. 3-12. The primary takeaway from the different models’

Figure 3-12: The Normalized Mutual Information score for the clusterings of the
latent state representations for each timestep in a 1-transition-layer model of the
linear-MNIST environment, varying the gradient-boosting as well as the length of
training sequences. "wfeatures" is trained separately, and can be seen as a benchmark
for the optimal model performance given this architecture.
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SMI scores seems to be that empirically, goal-boosting does not appreciably affect the

performance of the model. This implies that despite the rareness of goal occurrences,

at least for short-horizon problems, goal-boosting is not necessary to properly predict

goal-states.

3.5.5 Planning Performance

Finally, we tested our models, with varying training sequence lengths, no goal-boosting,

and a single transition-model layer, by using them to plan for 500 real episodes (fol-

lowing the procedure from section 3.4.4). The results of this evaluation can be seen

in Fig. 3-13. We can see that, for both environments, our models require relatively

Figure 3-13: The fraction of games (out of 500) won by a simple planning agent using
a 5-step BFS to choose actions according to models trained with varying sequence
lengths.

short training sequences to consistently generate successful 5-step plans. This seems

to conflict with the earlier experiments showing poor reward-prediction loss for all

but the longest horizons. However, in planning, the important thing is that "goal"

states be called goal states more often than non-goal states. Even from short train-

ing trajectories, the models seem to be able to predict this quality well enough to
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plan. It’s also interesting that the models seem to have an easier time planning

in the "complex" environment than in the "linear" one, despite the former’s more

complicated transition dynamics. This might be because no state in the "complex"

variant is never more than 3 steps away from a goal, whereas the much simpler linear

environment has states 4 and 5 steps away.

3.6 Discussion

We have described a method for learning a model to predict reward given historical

environment experiences. As our experiments have shown, the model is capable of

accurately learning state representations and reward dynamics for simple games. The

performance of the model degrades in states farther from the goal state, but improves

when training sequences get longer. The latent consistency loss also helps to learn

representations for states that are farther away from goals, at the cost of accurate

reward-prediction closer to goals.

One major problem appears to be the sparsity of goals, and the extent to which the

model breaks down farther from them. This problem, of signal sparsity, is inherent

to the "reward-prediction-only" model. However, one possible step forward is to

relax the problem setting. Rather than predicting exclusively the reward, predict the

reward as well as a small set of "features", which are provided by the trainer and

occur more frequently than the goals themselves. For more on this approach, see Ch.

4.

One might consider whether mean-squared error is the wrong form for the latent

consistency loss. This entire approach has modelled latent states as points in ℛ𝑛

(where 𝑛 is the latent-space dimensionality), but real-world planning problems often

contain more discrete attributes. We briefly experimented with forcing the latent

states to take values between −1 and 1, but the loss in representational capacity

substantially hindered our model. Changing the means of state representation, and

the accompanying (also currently continuous) transition function structure, may be

a promising direction to improve on the model.
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Another quirk of the model as it currently exists is that the transition model does

not inherently learn the structure of its predictions. That is, if we were to learn

a simple physics simulator environment for 2 bodies, and then change the environ-

ment to 3 bodies, no knowledge would carry over. This is because the weights in the

transition model are not tied, so the transition dynamics are learned entirely sepa-

rately for each component of the latent space. To address this issue, one can replace

the fully-connected layers of the transition model with convolutional layers (like in

the ConvLSTM framework [35]). As an example, Oh et al. [26] use a convolutional

transition model to learn the dynamics of an agent moving through a maze.

Though we have restricted ourselves to fully-observable environments, we can

without too much complication extend our approach to certain partially-observable

envronments. If we replace the encoder 𝐸, which is currently a CNN, with an RNN

with convolutional layers before each timestep’s input, we could use multiple ob-

servations at different timesteps to synthesize the initial latent state 𝑥𝑡. Similarly,

when predicting future latent states 𝑥𝑡+𝑘, the network can use the transition model

𝑇 to propagate partially-observed information forward. However, if a sufficient state

representation cannot be obtained from the preceding few observations, the problem

becomes harder. In that case, we cannot apply the latent consistency loss to equate

two states if there is uncertainty about whether they’re the same state. Similarly, we

could not assume determinism in the results of our actions if we were unsure of our

current state.

Similarly, relaxing the assumption of deterministic transitions requires a more

complicated model. The transition model itself must be stochastic in that case, yield-

ing multiple future latent representations given a single original latent representation

and action. Using a generative adversarial framework [13] could work, but would

be difficult to train. GANs are, as of the time of writing, notoriously unstable, and

this GAN would need to synthesize latent states which are themselves shifting and

being learned — not to mention the fact that even minor discrepancies in learned

probabilities of transitions would propagate problematically to future states. Recent

work by Esteban et al. [12] on recurrent conditional GANs shows that there is hope
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that such models might become tractable, but also serves to illustrate the difficulty

of training such a complicated network.
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Chapter 4

Learning Environment Models with

Partial Features

4.1 Motivation

As we saw in Chapter 3, learning environment dynamics using only reward prediction

can be useful for simple environments. However, as rewards grow sparser and envi-

ronments more complicated, the usefulness of the pure-reward approach decreases,

and we must seek alternatives. That said, we would still like to maintain our earlier

paradigm of training a model to learn a latent representation of the environment by

predicting sparse, known-to-be-important signals. Until now, the only such signal

we’ve considered is the reward. But often times we can find many real-world metrics

that are relevant to our desired latent state representation, and which we could use as

signals in training. Consider that a robot has available its task-space configuration,

or rangefinding data for its proximity to other objects. In both cases, a proper model

of the environment should be able to predict those quantities, even if they are only

tangentially related to the final goal (e.g. picking up a particular object).

To this end, we introduce a new framework for environment learning. We use

these external metrics, hereby referred to as "features", as a supervision signal which

our model should predict in addition to reward, so as to construct our latent space.

This setup can be understood as a sort of multi-task learning problem. As has been
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shown extensively [2], training a system to predict multiple related tasks jointly can

yield better predictions for each task than if each task were being predicted separately.

This is because by optimizing across multiple related objectives, the learner is less

likely to get stuck at a local minimum for a particular task. It will instead tend to find

a latent representation that is consistent with all the tasks (and thus for related tasks

more general). In our setup, the only task that truly matters is reward prediction. But

by jointly learning to predict a set of important, task-relevant features, our hope is to

impose beneficial structure on the latent space and thus improve our models’ reward

prediction performance. At the same time, our model can still learn a simplified

state representation, so long as the environment is "reward-and-features-reducible"

(an extension of "reward-reducibility" from Chapter 1).

We will still learn a latent environment representation 𝑥, and will now also learn

a "featurer" 𝐹 (𝑥) which aims to predict features 𝑓 given the latent state. One might

reasonably ask why we are not simply using the features 𝑓 as our latent state (instead

of using an intermediate representation 𝑥), and instead having 𝑥 be sufficient to

predict 𝑓 . The feature-as-latent-space approach is used by Villegas et al. [31], which

uses human body pose as the latent space, simulates it forward in time, and then

converts it into an image. (Their task is video prediction; in our case, we would use

it to compute the reward.) However, using the feature space as the latent space has

a couple fundamental limitations. On the one hand, the hand-designed features 𝑓

might not be sufficient to predict reward, making it important for the latent state

to contain other information related to reward. On the other hand, hand-chosen

features 𝑓𝑖 might not even contain enough information content to predict the value

of those same features 𝑓𝑡+𝑗 in the future. By allowing for a separate latent state

that must contain both sufficient information to predict features, as well as any other

information the learner determines is necessary to predict future rewards/features,

the system can be applied to a broader range of environments with less effort to

hand-design features.
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4.2 Reward-and-Feature Prediction

4.2.1 Problem Statement

Our goal is to learn the reward dynamics for a particular environment. We are given

𝑛 historical episodes, including observations {𝑜0, . . . , 𝑜𝑇}𝑛, actions {𝑎0, . . . , 𝑎𝑇}𝑛, and

rewards {𝑔1, . . . , 𝑔𝑇}𝑛. We are also given one of the following: either corresponding

lists of features {𝑓0, . . . , 𝑓𝑇}𝑛, or a "feature-extractor" function 𝐻(𝑜𝑖) → 𝑓𝑖 that can

extract features from observations on demand, and can be used to generate the lists of

features. Each 𝑓 is a vector containing multiple individual features, and each feature

can take one of a number of discrete classes (though this can easily be extended to

the continuous-feature case).

The environment in question must be fully observable and have deterministic

transitions (see Sec. 1.2), but can have stochastic observations and partial-state

rewards. We must also place a certain restriction on the type of features 𝑓 used in

supervision to make the problem tractable. Features must be one of the following:

∙ The feature is fully computable from the observation itself (there exists a func-

tion 𝐻(𝑜) that can compute the feature)

∙ The feature is partially computable from the current observation, and with the

incomputable part not excessively noisy, or

∙ The feature’s initial value is incomputable from the initial state, but the fea-

ture’s evolution is fully computable from the current observation. For example,

given a robot’s starting GPS location and heading, one can predict from a

video-feed how that location-signal is evolving, even though the robot could not

determine the GPS location from a video feed alone. (This requires changing

the training architecture slightly to accept initial feature-values at the beginning

of a training sequence, and we will not analyze this case.)
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4.2.2 Model

As in Chapter 3, our model has an encoder 𝐸, a transition model 𝑇 , and a goal-

extractor 𝐺, whose function is detailed in Eq. 3.1, and reproduced below:

𝑥𝑖
𝑡 = 𝐸(𝑜𝑖𝑡)

𝑥𝑡+𝑗|𝑡
𝑖

= 𝑇 (𝑥𝑖
𝑡, 𝑎

𝑖
𝑡, 𝑎

𝑖
𝑡+1, . . . , 𝑎

𝑖
𝑡+𝑗) , ̂︁𝑥𝑡|𝑡

𝑖 = 𝑥𝑖
𝑡

𝑔𝑡+𝑗|𝑡
𝑖

= 𝐺(𝑥𝑡+𝑗|𝑡
𝑖
)

We now add a new model component, the "featurer" 𝐹 , which extracts features from

the latent state:

𝑓𝑡+𝑗|𝑡
𝑖

= 𝐹 (𝑥𝑡+𝑗|𝑗
𝑖
) (4.1)

We also define a new loss:

ℒ𝐹 =
1

𝑍3

𝑛∑︁
𝑖=1

ℎ𝑚𝑎𝑥∑︁
ℎ=1

𝑇 (𝑖)−ℎ∑︁
𝑡=0

ℎ∑︁
𝑗=0

𝑀∑︁
𝑚=0

𝑐𝑚𝑎𝑥∑︁
𝑐=0

−𝐼
(︁
𝑓
(𝑖)
𝑚,𝑐,𝑡+𝑗

)︁
log ̂𝑓𝑚,𝑐,𝑡+𝑗|𝑡

(𝑖)
(4.2)

where 𝑓
(𝑖)
𝑚,𝑐,𝑡+𝑗 is the 𝑐th possible class of the 𝑚th component of the (𝑡+ 𝑗)th-timestep

feature vector from the 𝑖th episode, and 𝐼(𝑥) is the one-hot encoding of 𝑥 (along the

axis of 𝑐). 𝑀 is the total number of feature components in each feature vector 𝑓 ,

𝑐𝑚𝑎𝑥 is the total number of classes each feature could be in, ℎ𝑚𝑎𝑥 is the maximum

training sequence length, 𝑇 (𝑖) is the length of the 𝑖th episode, and 𝑍3 is the number

of terms in the loss (where each value of the 𝑓 vector is considered a separate term).

We combine this feature loss with the previously defined losses to create a new overall

objective:

ℒ = 𝜆𝐺ℒ𝐺 + 𝜆𝐶ℒ𝐶 + 𝜆𝐹ℒ𝐹 (4.3)

where 𝜆𝐶 , 𝜆𝐺, and 𝜆𝐹 are scalars modifying the relative importance of the different

losses.

Note that once training is complete, and the model is being executed, we no longer

use its feature prediction capability 𝐹 — and only compute the estimated reward 𝑔.
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4.3 Methodology

4.3.1 Architecture

The models for 𝐸, 𝑇 , and 𝐺 are identical to those presented in Section 3.4.1. The new

component, the "featurer" 𝐹 , is a two-layer neural network. The first layer contains

256 hidden nodes followed by an Exponential Linear Unit nonlinearity [9]. The second

layer has as many output nodes as the number of distinct features 𝑓 times the number

of different classes each of those features could take (we assume that features are in

a discrete class, though it is simple to relax this constraint). Each set of outputs

corresponding to classes of a feature component is then passed through a softmax

function to normalize the probabilities. These output probabilities are the estimated

likelihood of each feature’s true class.

4.3.2 Environments

One set of experiments will be done on a slightly-modified version of the complex

variant of the MNIST game described in Chapters 1 and 3. The difference is that

now we will also provide the model-training algorithm with different types of features

relating to the environment’s true state. Specifically, we create variants of the game

that provide the trainer with the current true digit of the game mod 𝑛, where

𝑛 ∈ {2, 3, 4, 5, 10}. This allows us to probe the effect of different amounts of feature

information and their effect on the model’s ability to learn an accurate latent space.

Our second set of environments is a pair of new, more complicated environments,

called the "increment game" and the "rotation game" (visualized in Fig. 4-1). Both

consist of 3-by-2 grids of MNIST digit images ranging from 0 to 2, and have one action

for each column and each row. However, their transition mechanics and goal-states

are entirely different. In the increment game, taking an action 𝑎 corresponding to a

row/column increments each digit in that row/column by 1 ( mod 2). The initial

state is generated by applying 5 random actions to a gamestate with all 0s. The

game’s objective is to make every tile display a 0.
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Figure 4-1: A graph demonstrating example transitions from a pair of environments.
On the top, an example of increment game transitions, in which the 3rd column is
incremented and in which the 1st row is incremented. On the bottom, an example
of rotation game transitions, in which the 1st row is rotated and in which the 2nd
column is rotated.

In the rotation game, taking an action 𝑎 corresponding to a row/column rotates

the digits in that row/column down/to the right by 1. For examples, see Fig. 4-1.

The goal is to have the 0s on the left, the 1s in the center, and the 2s on the right.

The initial state is generated by applying 5 random actions to a goal state (reversed,

so that rows are left-shifted instead of right-shifted).

These environments provide interesting new attributes. Their state-spaces are

much more complicated than the MNIST game’s, with about 100 different states

rather than 10, making memorizing the entire transition graph harder. They also

have more-structured transition functions, in which subcomponents of the latent state

are separately manipulated in numerous ways. The two environments also differ from

each other in significant ways. Each subcomponent (digit) of the increment game is

only dependent on that same component in the previous timestep, whereas in the

rotation game the value of a digit in the next timestep depends on a different digit

elsewhere in the state. In the increment game, every achievable state (including the
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goal) is reachable from every other state in at most 10 moves — whereas in the

rotation game, the true gamestate can get substantially farther from a goal state.

We create variants of the increment and rotation games with different amounts

of feature info. For each of the two environments, we include one variant with every

digit as a separate feature, one variant with only the 4 rightmost digits as features,

one environment with only the 2 rightmost digits as features, and one environment

with no features at all. Comparing the ability to learn these variants can provide

us insight on how important the density of features is to learning more complicated

environments.

4.3.3 Metrics

We use the same metrics as in Chapter 3, with a couple modifications and one addi-

tion. First, for the increment and rotation games, the clustering-metric is no longer

relevant since there are too many distinct states, and they are too complex, to expect

KMeans to automatically segment them all. Similarly, when evaluating the planning

algorithms’ performance, we set up the initial states to have a guaranteed solution

that is exactly 5 states long. We also introduce a new metric, the mean cross-entropy

loss for feature prediction, that is the average cross-entropy loss for the prediction of

each feature in 𝑓 for a given group of predictions.

4.4 Experiments

4.4.1 MNIST with features

The first experiment explores the complex MNIST game environments with varying

feature types. We train models with 3-action sequences, with 𝜆𝐹 = 𝜆𝐺 = 𝜆𝐶 = 1.

The results of the training are visualized in Fig. 4-2. First, we can clearly see from

the bottom left figure that providing partial state information improves the model’s

reward prediction ability in nearly all cases. In the top left, we see that the latent

spaces learned by the models using 3, 4, 5, and 10 classes are more-or-less equivalently
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Figure 4-2: Results of the experiments learning models for the complex MNIST game
environment, with 3-step training sequences and 𝜆𝐶 = 𝜆𝐹 = 𝜆𝐺 = 1. We vary the
auxiliary features provided to the learner, which is always the true digit mod 𝑛,
where 𝑛 ∈ {2, 3, 4, 5, 10} (with the feature-blind model provided for comparison).
Top left: NMI score of latent-space clusters generated by KMeans. Top right:
Mean cross-entropy loss for feature prediction. Bottom left: Log-loss of reward
prediction. Bottom right: Same as previous, but with featureless version omitted
for clarity.

good, with 2 seemingly being not enough information to create a good a latent space

structure, though still better than with no features at all. This suggests that with

partial (though incomplete) information about the state (e.g. in the mod 3 feature

case), the model is capable of inferring the rest of the state and segmenting the classes

as well as if it were given the full state.

We also see, in the top right, that the feature-prediction accuracy decreases as

the feature complexity increases. This makes sense, as there are a greater number of

features to accurately predict. On the other hand, from the bottom two charts, we

can see that increasing feature complexity improves reward prediction up to a point
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Figure 4-3: Frequency of game lengths out of 500 games used to evaluate the (left)
increment and (right) rotation games.

(except for mod 5)1. This suggests that when choosing a set of features 𝑓 , there

is a tradeoff between increasing feature-complexity to induce more structure on the

latent space, and decreasing feature complexity or scaling its relative importance via

𝜆𝐹 to reduce its importance relative to reward-prediction in the overall loss.

4.4.2 More complicated games

In our second set of experiments, we trained models on the variants of the increment

and rotation game environments. We can see from Fig. 4-3, unlike in the MNIST

game, these games tend to be considerably longer, to the point where we cut games

off if they did not conclude after 100 actions. Each model was again given 3-action

training sequences and 𝜆𝐶 = 𝜆𝐹 = 𝜆𝐺 = 1. The predictive results are evaluated in

Fig. 4-4.

The first finding, in the top two figures, is that the models were much more capable

of learning the feature representations for the increment game than they were for

the rotation game, especially in the short term. However, the marginal usefulness of

additional features in predicting those features (as shown in the variance in the feature

losses) is much greater for the rotation game than the increment game. This makes

sense, as the increment game’s features are all independent of each other (and thus

1The feature-space mod 5 has an odd effect on the state space. It is particularly difficult to
separate between e.g. a 1 and a 6, because adding 1 or multiplying by 2 would yield the same state
mod 5. There is only one action, 𝑥3, that ever differentiates the two, and so the optimization is
unsurprisingly prone to suboptimal local minima in a way the other partial feature representations
were not. This raises the point that sometimes feature-choices can actually be misleading and trap
the model in local optima themselves — though in this case it still outperforms the featureless model
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Figure 4-4: Results of experimenting with feature-trained models of the increment
game and rotation game environments. Each was provided with 3-timestep training
sequences, 𝜆𝐶 = 𝜆𝐹 = 𝜆𝐺 = 1, and with varying amounts of feature information: ’full’
meaning all 6 state digits, ’2missing’ meaning only the 4 rightmost digits, ’4missing’
meaning only the 2 rightmost digits, or ’none’ meaning no feature information. The
left column shows results for the "increment game", while the right shows results for
the "rotation game". Top: Mean cross-entropy loss of feature prediction. Bottom:
Log loss of goal prediction.

it is no easier to predict previous features given new features) whereas the rotation

game’s features are interdependent and learning a more complete state representation

helps in future feature prediction.

The other finding, in the bottom two figures, is that the goal prediction quality

actually suffers with more features in the increment game, while using features sig-

nificantly improved performance in the rotation game. This may again be a case of

the earlier discussed tradeoff: improving the latent space to reduce the feature loss

ℒ𝐹 can come at the cost of reducing the goal loss ℒ𝐺. (Perhaps fiddling with 𝜆𝐹

would fix this problem, though some tradeoff, so long as the model is not perfect, is

inevitable) However, as can be seen in the rotation-game results, even if the model
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isn’t able to learn to accurately predict features, the incorporation of features can

still improve the model’s ability to predict future goal-values.

In Fig. 4-5, we show the performance of the models for a 5-step planning problem.

Interestingly, the rotation and increment games have completely opposite improve-

ment patterns with increased number of features provided to the learner. The rotation

game does appear to be substantially harder than the increment game. One reason

for this might be that the order of actions in the increment game doesn’t matter,

whereas the order in the rotation game matters a great deal, and so there are fewer

acceptable paths to take. Using our analysis of Fig. 4-4, we can make certain predic-

tions about the cause of these results. The rotation game’s goal-predictive capabilities

improved with more features, leading to the overall increase in planning success, with

the final "full-features" model slightly distracted with feature-prediction. The results

from the other model are harder to explain, and further research is needed. Still, it

may be partially attributable to the fact that the pure-reward-prediction model was

good enough that additional features did not provide substantial leverage (until the

final step, which learned a complete latent state, and thus was able to outperform the

other models. This theory is borne out in a subjective analysis of the learned latent

spaces).

4.5 Discussion

We have demonstrated an approach that can incorporate external features into model-

learning for reward prediction. Incorporating external features can make certain

reward prediction problems more tractable to learn, though it provides less benefit

for other problems and can even worsen reward-prediction performance when it forms

a competing objective. In many experiments, just a few features were sufficient to

interpolate the rest of the latent state.

One particularly nice aspect of this approach is that it allows human practitioners

direct influence over the model’s learned state representation. Much time is spent

proverbially shaking our fists at neural network architectures that do not extract
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Figure 4-5: The goal-achievement frequency (evaluated on 100 games) for a 5-step
BFS planner using models trained to imitate the "rotation" and "increment" environ-
ments. There is guaranteed to be a 5-step path to the goal for each initial state. Each
model was trained with 3-timestep sequences, 𝜆𝐶 = 𝜆𝐹 = 𝜆𝐺 = 1, and with varying
amounts of feature information: ’full features’ meaning all 6 state digits, ’2missing’
meaning only the 4 rightmost digits, ’4missing’ meaning only the 2 rightmost digits,
or ’no features’ meaning no feature information at all.

the latent representations we were hoping, because we lack the ability to incorporate

information into our networks that traditional programmers have over their programs.

This approach allows us to both directly incentivize and directly inform the model

to learn latent representations that contain information we deem important — while

also leveraging the adaptive strength of machine learning to plug the holes in the

featureset to improve the accuracy of the model.

One challenging question is how to properly evaluate models that are provided

with external features. Clearly, extremely hard problems (like those in robotics) are

sufficiently difficult under any setting that solving them with the aid of certain ex-

ternal features is meaningful. However, for simpler problems, it is hard to know

whether success at a task is "impressive" or "trivial". The quantity of features that

one can provide to the trainer is a sliding scale, and any problem becomes trivial

when nearly the entire true state space is revealed to the algorithm. The relation-

ship between feature-complexity and environment-learning-tractability is ultimately

environment-dependent, but further study on the characterization of environments is
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needed.

Finally, generating the features themselves can be done in a number of ways. The

most costly but most general way is through explicit annotation of each timestep in

each episode, e.g. by a human. Alternatively, one can create a feature-extractor func-

tion (either using a neural network, or any traditional non-differentiable algorithm)

to extract the features dynamically. A third approach is to generate the features

automatically from the data in an unsupervised manner. We briefly discuss a number

of methods for unsupervised feature generation in Appendix B.
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Appendix A

Reward Prediction with Valid/Invalid

Transition Classification

A.1 Encoding structure through classification

This work has centered around the question of how best to learn a latent representa-

tion of the world. As has previously been discussed, this boils down to the question:

"what questions should the latent state be asked to encode?" In Chapter 3, the latent

representation was required to encode enough information to guess the reward, and

sufficient information to predict subsequent reward. However, in sparse-reward envi-

ronments such an approach proves inadequate, and so in Chapter 4 we require the

latent state to encode enough information to guess the reward and other important

info, now and in the future. Here, we pose a potential new requirement: that the

latent state encode enough information for a classifier to discern whether a proposed

state transition is "valid" and truly occurred in the environment, or whether it is

made up and thus invalid.

There are a few ways to set up such a classifier. In the first, the classifier 𝐶𝑎(𝑥0, 𝑥1)

takes as input two states 𝑥0 and 𝑥1, and for each action 𝑎𝑖 ∈ 𝐴 outputs the probabil-

ity that 𝑇 (𝑥0, 𝑎𝑖) → 𝑥1 is a valid transition.1 This approach was used by Pathak et

1In the case of a multi-state transition, it may generate the probabilities for different sequences
of actions.
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al. [28] for feature extraction, but is fundamentally hobbled because it scales poorly

with the number of actions/length of action sequences. The other approach is to

train a classifier 𝐶𝑏(𝑥1, ̂︀𝑥1) that is given an initial state 𝑥0 and action 𝑎0, simulates

the state forward ̂︀𝑥1 = 𝑇 (𝑥0, 𝑎0), and then predicts whether the resulting latent states

are the same or different. An important ingredient here is that the environment be

deterministic: the original "real" resulting state 𝑥1 must be the only possible latent

state resulting from the action 𝑎0, so that simulating 𝑥0 forward can be assumed

to yield the same state. Otherwise, this approach easily scales with longer action

sequences and can be readily incorporated into the previous chapters’ prediction ar-

chitectures. While it ultimately suffers from a fundamental flaw, we believe that it is

worth examining it as an interesting alternative approach to environment learning.

A.2 Model

Here we formalize the transition classifier model. We are given a set of historical

episodes of observations 𝑜1, . . . , 𝑜𝑇 , actions 𝑎1, . . . , 𝑎𝑇−1, and goal-values 𝑔1, . . . , 𝑔𝑇 ,

which we alternatively refer to as "valid" transition sequences 𝑆𝑡. We construct a set

of "invalid" transition sequences {𝑜𝑡, 𝑎𝑡, 𝑎𝑡+1 . . . , 𝑎𝑡+𝑘−1, 𝑜𝑡+𝑘} = 𝑆𝑓 by one of several

methods which we’ll discuss later. We define the latent state prediction architecture

as in Eq. 3.1, reproduced here for convenience:

𝑥𝑖
𝑡 = 𝐸(𝑜𝑖𝑡) (A.1)

𝑥𝑡+𝑗|𝑡
𝑖

= 𝑇 (𝑥𝑖
𝑡, 𝑎

𝑖
𝑡, 𝑎

𝑖
𝑡+1, . . . , 𝑎

𝑖
𝑡+𝑗) , ̂︁𝑥𝑡|𝑡

𝑖 = 𝑥𝑖
𝑡 (A.2)

We propose training a neural network classifier 𝐶 to differentiate between valid and

invalid transitions using the following loss function:

ℒ𝑉 =
1

𝑍4

𝑛∑︁
𝑖∈{𝑆𝑡,𝑆𝑓}

ℎ𝑚𝑎𝑥∑︁
ℎ=1

𝑇 (𝑖)−ℎ∑︁
𝑡=0

ℎ∑︁
𝑗=0

−𝐼(𝑖) log𝐶
(︁
𝑥
(𝑖)
𝑡+𝑗, 𝑥𝑡+𝑗|𝑡

(𝑖)
)︁

(A.3)
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where 𝐼(𝑖) is an indicator variable which is 1 if the 𝑖th trajectory is "valid" and 0 if

it is invalid, and 𝑍3 is equal to the number of log-loss terms in the sum. This loss

can be added to e.g. the goal-prediction loss and latent consistency loss to yield an

overall objective:

ℒ = 𝜆𝐺ℒ𝐺 + 𝜆𝐶ℒ𝐶 + 𝜆𝑉ℒ𝑉 (A.4)

where 𝜆𝐺, 𝜆𝐶 and 𝜆𝑉 are scalar constants. This allows the transition validity loss to

impose a structure on the latent space, and hopefully in so doing improve the system’s

ability to predict rewards.

Note that this formulation is different from adversarial learning, e.g. as used in

Mathieu et al. [21] to generate video. In the adversarial version, the classifier 𝐶 serves

as the opponent of the latent predictor. The classifier is shown "valid" transitions

and predicted transitions, and is tasked with ferreting out the predicted (and thus

fake) transitions. The latent predictor’s adversarial objective is to fool the classifier,

and in so doing it learns to predict latent states similar to the distribution of true

latent states.

In this case, however, the classifier is actually cooperating with the latent pre-

dictor. The latent predicted state is assumed to be true, and is compared to the

"valid" and "invalid" transitions. The classifier aims to differentiate the two groups,

and in part does this by changing the latent representation (via the encoder) to con-

tain more information that signifies the state as valid. Thus this approach does not

require optimizing adversarial objectives or finding saddle points, and consists of a

single fully differentiable objective.

The drawback of this approach lies in the one detail we’ve glossed over: how does

one construct the set of invalid transition sequences 𝑆𝑓? This turns out to be the

method’s shortcoming. There appears to be no good general purpose scheme, but

below we will discuss a few.
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A.2.1 Mechanisms for Generating Invalid Transitions

We will describe each of the following mechanisms for the single-transition case,

though they can be easily extended to multi-action sequences. The following ap-

proaches can also be combined, constructing subsets of the negative transition set 𝑆𝑓

from the different approaches.

Drawing random states

The first and simplest way of creating invalid transitions is to simply take a real 𝑜𝑡

and 𝑎𝑡, and then let the resulting state be a random state 𝑜𝑡 drawn from the set of all

previously observed states 𝑂𝐴. Jonschkowski et al. [17] used this approach to force

far-apart states to have different representations. The approach will generate a false

transition in many cases, although there is the possibility of randomly drawing a state

which happened to be true. The likelihood of this occurring is directly proportional

to the frequency that we’ve previously visited that state — so in the linear MNIST

game it may be nearly 1 in 10 incorrect, while in environments with millions of states

it is almost always correct). The major shortcoming of this actually the distribution

of states that are likely to occur. In any environment where states are similar across

time, a randomly drawn state taken from any moment in the past will likely be much

farther away from the initial state 𝑥0 than 𝑥1 would be (e.g. video frames in Mario).

The classifier therefore may fail to learn to differentiate between two potential future

states 𝑥1 and 𝑥1 which are both close to 𝑥0, because it was rarely forced to identify

almost-right-yet-wrong transitions.

Drawing negative examples from the same episode

We can generate a distribution of invalid result states 𝑥1 that is more similar to the

true state by specifically using the other states from the episode 𝑆 = 𝑆𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∖ {𝑥1}.

The rationale is that in many environments, states in the same episode are all mostly

similar, but often not identical. A major drawback of this approach is that it assumes

that state occurrences are to some extent order-independent. That is, states that are
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before or long after 𝑥0 are similar to and representative of states that might occur

immediately after (like 𝑥1). As a simple counterexample environment, take checkers.

Given a state of the board 𝑥𝑡 and a proposed negative state ¯𝑥𝑡+1 you can immediately

rule out any state before 𝑥𝑡 because it would have more pieces on the board/the pieces

would be farther backward, without understanding anything about which pieces are

moved by what action. Thus this approach only works for environments where the

distribution of states is time-independent.

Drawing negative examples by sampling other actions

The last and most direct approach is to generate invalid transitions by sampling

actions 𝑎𝑖 ∈ 𝐴 ∖ 𝑎0 and using the results 𝑥1 = 𝑇𝑟𝑒𝑎𝑙(𝑥0, 𝑎𝑖) as the set of negative tran-

sitions. The distribution of resulting states is likely to be as similar to 𝑥0 as 𝑥1 would

be, largely solving the shortcoming of the previous approaches. This does assume

that two actions do not yield the same resulting state, though that is true in many

cases. More problematically, however, this approaches requires the ability to simulate

the environment, repeatedly, from an identical initial condition, and observing the re-

sults. All of our previously discussed methods for model-learning could be trained

using historical real-world data, but this approach cannot. It is thus limited to the

world of perfectly-simulatable games, for which learning an approximate simulator is

somewhat less interesting.
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Appendix B

Types of Features

In this appendix, we will briefly go over some of the types of semi-supervised features

𝑓𝑡 that can be used to force the model to learn a non-trivial state representation 𝑠.

B.1 Rewards/Goals

If 𝑓 is the reward/goal function of the relevant task, this in principle means that

the system will learn the simplest state representation which correctly predicts the

reward for a given task at any future timestep. In practice, rewards/goals are often

sparse, and are insufficient to alone learn rich feature-spaces.

B.2 Observations as Features

Much of the work to-date done on environment simulators aims to learn states 𝑠𝑡 that

can fully reproduce that state’s observation 𝑜𝑡. This feature is appealing because the

signal is strong (successfully reproducing the observation almost certainly means cap-

turing the true underlying state 𝑥), and is available to the agent’s system using no

further effort. Chiappa et al. [7] and Oh et al. [25] use the pixel-wise MSE loss to pre-

cisely predict future frames, while Mathieu et al. [21] proposes to predict frames that

an adversarial learner cannot distinguish from a true frame. In general, learning to

fully predict video is training-resource intensive, and current probabilistic generative
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modeling techniques are often unstable. This makes video prediction a challenge for

environments with observation stochasticity. Further, because 𝑠 must contain virtu-

ally all of 𝑥, such a procedure is overkill for environments with partial-state rewards,

in which only a small portion of the true state is salient.

B.3 Action-predictive Features

A novel approach proposed by Pathak et al. [28] suggests self-supervised feature

learning by predicting the action 𝑎𝑡 from successive observations 𝑜𝑡 and 𝑜𝑡+1. In

other words, to train a classifier 𝐴(𝜑(𝑜𝑡), 𝜑(𝑜𝑡+1)) to predict 𝑎𝑡, and then to use the

learned embedding 𝜑(·) as the action-relevant observation features. This approach

extracts only features of the environment that are affected by the agent’s actions

(if not, they would not be helpful in determining which action was executed). On

the other hand, this approach fails to extract features not relevant to predicting the

action which may nevertheless be important for modeling the environment (e.g. a

long-term process which will only affect the agent many frames into the future). This

can be at least partially remedied by forcing the representation to predict the reward

𝑟𝑡 (e.g. as 𝑅(𝜑(𝑜𝑡), 𝜑(𝑜𝑡+1) as well, to learn short-term features salient to the reward.

B.4 Reusing existing filters

One approach for representation-learning used in Neverova et al. [24] is to train a

neural network to segment an image into different objects using supervised examples.

Such segmentations can also be done by modifying simple trained CNN classifiers

to be fully convolutional networks [20]. These scene segmentations can be used as

"high level" features which still maintain much of the spatial structure of the original

representation, and can be used as features for nearly-unsupervised learning.
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