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ABSTRACT
Designing differentially-private mechanisms that provide both pri-
vacy and utility is a challenging task that requires human expertise.
Automating mechanism design could ease the adoption of differ-
ential privacy in new contexts. In this work, we frame the task of
finding a differentially private mechanism as a machine learning
problem. Specifically, we construct mechanisms using recently-
popularized Lipschitz Neural Networks and outline the foundations
for optimizing such mechanisms via gradient descent. We apply
this approach to learn mechanisms for several queries on simple
datasets, and discuss our results.

CCS CONCEPTS
• Security and Privacy → Differential Privacy Applications
and Implementations.
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1 INTRODUCTION
Designing differentially-private mechanisms is a challenging task
that often requires human expertise, especially for novel statistics
or non-standard noise requirements. Ideally, it would be great if this
could be done automatically: we could define a family of possible
release mechanisms with a given level of privacy and a metric
for computing the utility of each mechanism, and then have an
algorithm search through them automatically to find the best one.

In this spirit, this work frames the task of finding a differentially
private mechanism as a machine learning optimization problem,
where we are learning the parameters of a release mechanism
such that it maximizes the utility of the generated responses while
maintaining differential privacy.

Specifically, we will define our DP mechanism using a neural
network. The input to the network will be the dataset, concatenated
into a vector1, and the output of the networkwill be used to generate
a response. We introduce two approaches for building a mechanism

1In this work, we’ll focus on single-valued data, though these methods can be extended
to vector-valued data.
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using neural networks: one based on the Laplace mechanism, and
another based on the exponential mechanism.

Crucially, we need to bound the Lipschitz constant of the neu-
ral network in order to bound the global sensitivity of the result
with respect to the inputted data points. To this end, we leverage
Lipschitz Neural Networks [Gouk et al. 2018], which use a repa-
rameterization trick to bound the overall L1-Lipschitz constant of
the neural network with respect to each of the input features.

To make the resulting mechanism output high-utility responses,
we need to define the utility of a given differentially private mecha-
nism. Broadly, we frame this in terms of a ‘response-loss’ L: if for a
dataset x the true query answer was a but the given response was b,
we say that the response incurs loss L(x ,a,b). We define the utility
of a differentially private mechanism as the expected response loss
over the randomness of the mechanism. This quantity will serve
as the loss that our neural network will be trained to minimize.
Note that in order to learn a mechanism that is accurate on our
private dataset, we will in practice need to train the network on a
distribution of datasets that is similar to our private dataset.

We implement our approach to learn mechanisms for several
query types on toy datasets, and discuss the results. While the
results do not exceed the performance of existing expert-designed
DP mechanisms, we identify several observations that merit further
study on the use of Lipschitz NNs for differential privacy.

1.1 Related work.
Loss functions are used in [Ghosh et al. 2012] to quantify how
well an oblivious mechanism performs in answering differentially-
private queries, and derives certain optimality guarantees about the
geometric mechanism in restricted scenarios. In our work, we con-
sider general private mechanisms and only assume a practitioner’s
knowledge of the distribution of datasets.

In [Blocki et al. 2013], the authors define restricted sensitivity of
a function by doing the analysis over a restricted class of datasets
and then smoothly extending it outside that class. The extension is
guaranteed to be differentially private but not necessarily accurate.
In our approach we hope that if we train in a sufficiently-broad
distribution, the mechanism we learn might generalize outside the
distribution, thus in practice yielding comparably better accuracy
guarantees outside the training set.

In the direction of testing and enforcing the Lipschitz property,
[Jha and Raskhodnikova 2013] describe how to test whether a
function over a finite domain is Lipschitz or not. They provide
an explicit ‘filter’ mechanism that given a function f , releases a
function д that is k−Lipschitz, where k is provided by a distrusted
client. Since we are working specifically with neural networks,
we are able to enforce this property more simply by normalizing
weights.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 PRIVACY MECHANISMS AS AN
OPTIMIZATION PROBLEM

Given a query over a fixed-size dataset, we want to quantify in how
‘far’ a given response is from the true query answer.

Definition 2.1 (Response-loss). For a dataset x ∈ Rn and query q :
Rn → R, let L(x ,q(p), r ) denote the loss when the true query result
for p ∈ X is q(p) and the response is r , where L : Rn × R × R → R.

In our experiments, we used both mean squared error and quan-
tile error as response-losses.

We are interested in finding a high-utility differentially private
mechanism for a given dataset distribution and a given privacy
budget ε . We propose two approaches.

2.1 Adding Laplace noise to an optimized
function

The Laplace mechanism adds noise proportional to the sensitivity
of the function and the inverse of the desired privacy parameter
[Dwork et al. 2006]. To ensure that our sensitivity is bounded, we
best approximate the function in a given dataset distribution using
a Lipschitz Neural Network (see Sec. 3) and then add appropriate
Laplace noise to ensure differential privacy.

Definition 2.2 (Expected response loss of a function). For a given
query q : Rn → R and a dataset x chosen from a distribution of
dataset D, let f : Rn → R be a function approximating q. We
define the expected response loss, abbreviated as ERL, of a Laplace
mechanism based on this function as

ERL(f ,q,D) = Ex∼DEz∼Z [L (x ,q(x), f (x) + z)] ,

where z is the noise variable drawn from the noise distribution Z.

The optimal function f ∗ in a class of functions F is defined nat-
urally as the function in that class that incurs the smallest expected
response loss. In our experiments, we specify a range of width c
where the data comes from. When we use a neural network with
Lipschitz constant of k , chosen independently of the data at hand,
and add Laplace noise z ∼ Lap

( kc
ε
)
, then z is independent of f (p)

and q(p). This gives

E[(r + z − q(x))2] = E[(r − q(x))2] + 2E[z]E[r − q(x)] + E[z2]

= E[(r − q(x))2] +
2k2c2

ε2
,

which shows that to minimize the expected response loss of the
differentially private mechanism, it suffices to minimize

E
[
(r − q(x))2

]
= Ex∼D [L (x ,q(x), f (x))]

We model the mechanism as fε + z, where fε : Rn → R and
z ∼ Lap

( kc
ε
)
. Explicitly, the neural network will take as input an

n × 1 vector (n 1-dimensional dataset elements) and output a single
real value. To bound the sensitivity of the network, we use Lipschitz
neural networks, which bound the Lipschitz constant of the neural
network.2 We approximate the expected ERL over draws from the
dataset distribution by computing the average ERL on sampled
minibatches of datasets drawn from D, and use a gradient descent
to minimize the expected response loss.
2This can be modified to support variable-sized datasets by making the network a
recurrent neural network (RNN).

2.2 Learning the utility function of the
exponential mechanism

Alternatively, we can use the exponential mechanism, introduced
in [McSherry and Talwar 2007], by having the neural network
approximate the utility function. This mechanism is defined with
respect to some utility function

u : Rn × R → R

which maps dataset/output pairs to utility scores and measures how
‘good’ every answer is. The mechanism then makes high quality
outputs exponentially more likely at a rate that depends on the
sensitivity of the utility function and the privacy parameter, and
samples from that distribution.

We again use bounded-constant Lipschitz neural networks to en-
sure that the utility function has bounded sensitivity. The expected
response loss of the utility function is calculated as

ERL(u,q,D) = Ex∼D

[∑
r ∈R

L (x ,q(x), r ) × Pexp (r ,u,x)

]
,

where Pexp (r ,u,x) = e
ε
ck u(x,r )∑

r ∈R e
ε
ck u(x,r )

, which measures how likely it

is that the mechanism will output a response r .
It’s important to note that exponential mechanisms are general

mechanisms, in that every differentially private algorithm is cap-
tured by the exponential mechanism if we choose some appropriate
utility function! In particular, assume we have an ε−differentially
private algorithm A : Rn → R for a query q : Rn → R. Then
there exists a utility function:

u(x , r ) = log Pr [A(x) = r ]

for every dataset x and r ∈ R, where the induced exponential
mechanism is 2ε differentially private.

Analogous to the previous approach, we model the utility func-
tion as a neural network of the form uε : Rn × R → R.

3 LIPSCHITZ NEURAL NETWORKS
In order to use a neural network in a DP mechanism, we need to
bound the sensitivity of the output of the network to each input
data-point. Specifically, as long as the data comes from a bounded
region |x −x ′ | ≤ c for all neighboring x ,x ′ ∈ R for some constant c ,
then the global sensitivity of a function f with Lipschitz-constant3
kf is bounded by GS(f ) = ckf .

A neural network can be understood as a composition of a
series of sequential functions (matrix multiplications and non-
linearities).4 To compute the Lipschitz constant of a neural network,
we rely on the composition of Lipschitz-constrained functions: if f
is k1-Lipschitz and д is k2-Lipschitz, (f ◦ д) is k1k2 Lipschitz.

We can compute the Lipschitz constant of an unconstrained
NN by computing the constant with respect to each layer, and
multiplying these all together to get the overall network’s constant.
Conveniently, the classic non-linearity ReLU (h(x) = max(x , 0)) is
1-Lipschitz. However, the weight matrix multiplications turn out to
be another matter. For an unconstrained NN, this Lipschitz constant

3For the rest of this paper, ’Lipschitz-ness’ refers to L1-Lipschitz-ness.
4In this work, we will consider only fully-connected networks, though extensions
extensions for convolutional and residual networks exist [Gouk et al. 2018].
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Figure 1: Lipschitz NNs trained to minimize predictive MSE
on the function f (x) = sinx + 1

2 cos (10x), with increasing
Lipschitz parameters. f (·) is interesting because it is com-
posed of two signals, one low-frequency (at most k = 1 Lips-
chitz) and another high-frequency (at most k = 10 Lipschitz).
As is clear, the Lipschitz NNs fail to recover the optimal k-
Lipschitz fit for a given k , though increasing k does result in
a better fit.

may end up being very large; see [Gouk et al. 2018] for a deeper
exploration.

The idea behind Lipschitz NNs [Gouk et al. 2018] is to bound
the Lipschitz constant of each weight matrix. We enforce a similar
constraint by reparameterizing the weight matrices. To force a
given matrix multiplication to be k-Lipschitz, we store our original
parameters as a weight matrixW , but instead of multiplying the
layer input z byW , we multiply z by a reparameterized matrixW ′:

W ′
i j =

Wi j

max
(
1, ∥W·,i ∥1

k

) (1)

This parameterization ensures that ϕW
′

is k-Lipschitz by uniformly
squeezing theweights in each column such that they always absolute-
sum to k . These operations (max, ∥ · ∥) can be straightforwardly
incorporated into a neural network, and their gradient computed
via automatic differentiation.

Thus, to train a b-layer neural network with an overall Lipschitz
constant of k with ReLu non-linearities, we need only apply this
reparameterization to each of the layers, forcing each individually
to be b

√
k-Lipschitz.

In theory, Lipschitz NNs offer a straightforward means for learn-
ing bounded-Lipschitz approximators using traditional unconstrained
optimization techniques. In practice we have found that the con-
strained space of valid networks meaningfully complicates opti-
mization, a conclusion shared by other explorations of Lipschitz
NNs [Gouk et al. 2018], which found that k-Lipschitz NNs were
only able to recover functions with Lipschitz constants substantially
smaller than k . See Fig. 1 for an example of their performance on a
toy problem.

4 METHODOLOGY
4.1 Data Distributions
To explore the basic feasibility of our mechanism-learning ap-
proaches, we created a simple distribution over datasets, where
each dataset consisted of n single-valued data points. In all our
experiments, n = 100. We concatenated the points in each dataset
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Figure 2: Draws from the mixture of truncated Gaussians
distribution used to train the neural networks, along with
their means and medians.

Figure 3: Architecture of the exponential-method network.

to form dataset vectors x .5 We focus on learning mechanisms for
simple statistics: the mean, variance, median, and 10th percentile
of the dataset.

In all our experiments, we drew each new dataset from a hierar-
chical model that parameterized a mixture of truncated Gaussians
on the interval [0, 10]. The parameters of each truncated Gauss-
ian (mean, variance, and relative weight) were randomly drawn
for each new dataset; for complete details, see forthcoming work.
Our training datasets used 4-Gaussian mixtures. We also tested our
learned mechanisms’ generalization on 2-Gaussian mixtures.

4.2 Neural Network Architecture and Training
All our neural networks used ReLU activations, and 100-node layers.
For the exponential method, we constructed the discrete set of
possible responses R as 50 points uniformly distributed on the
interval [0, 10].

For the Laplace mechanism, we implement the neural network as
a standard two-layer NN. Our utility function neural network (UNN)
was built by combining three sub-networks Gd ,Gr , and Gc . Gd is
a two-layer network that takes in the dataset x ∈ Rn , and converts
it into a latent representation zd = Gd (x). If the overall network is
required to be k-Lipschitz, we forceGd to be k-Lipschitz. Separately,
the potential response r is processed by the one-layer sub-network
Gr to yield a latent representation of the response zr = Gr (r ).
Finally, these two results are concatenated and fed into the final
two-layer subnetwork Gc , such that the output Gc ([zd , zr ]) = u.
Gc must be 1-Lipschitz to preserve the fact that the overall network
remains k-Lipschitz w.r.t. x (no such requirement exists for r ). A
diagram visualizing the setup is available in Fig. 3.

We used two different response losses:
• classical squared error (q(x) − r )2,
• quantile error

∑
p∈x 1[min(q(x), r ) < p < max(q(x), r )],

which measures the number of points between the true and
released statistic, where 1 is the indicator operator.

5Another sensible strategy would be to have the vector x be a histogram representation
of the different bins in the data range; we leave this alternative for future work.
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Figure 4: The probability mass of responses (in green) from
a median-releasing mechanism with Lipschitz constant k =
10 trained using quantile loss, on a series of fresh datasets
(pink), along with the true median (black).

We only use the quantile error when learning the utility function for
the exponential mechanism, for the variance and 10th-percentile
queries. In all other experiments, we use the mean squared error.

Before training, we need to specify the overall Lipschitz constant
k we want to enforce in the network, and thus the global sensitivity
of the network. For the exponential-mechanism NN, we also need
to specify the privacy loss parameter ε ahead of time6.

During training, we compute the average expected response loss
on 32-dataset batches (sampled from 104 pre-drawn samples), and
then updated the parameters by computing the gradient of the pa-
rameters w.r.t. this loss using the Adam update rule [Kingma and Ba
2014]. In practice, the Lipschitz NNs were sensitive to initialization;
if the loss did not improve after the first epoch, we reinitialized,
which eventually tended to converge to a better solution.

5 EXPERIMENTS
In Figure 4, we visualize the performance of an exponential mecha-
nism trained to release the median. We can see that the mechanism
consistently approximates the true median - when it misses, it does
so only in a direction with relatively small quantile loss. The mecha-
nism appears to have automatically learned to generated symmetric
noise; many of our training runs exhibited this behavior, though
some learned more complicated response distributions.

We plot the performance of our approach in learning mech-
anisms for several queries in Figure 5. We can see several clear
trends.

First, when the Lipschitz constant provided to the network is
too small, the network converges to the data-blind baseline. This
is roughly what we’d expect of NNs that are over-constrained. In
general, our experiments show that we need to takek larger than the
actual Lipschitz constant of the ideal expert-designed mechanism.

Second, in many of the plots, the expected response loss doesn’t
increase even under extremely high Lipschitz constants (and thus
global sensitivity values). This is counterintuitive; we’d expect that
as e.g. the Laplace mechanism’s injected noise increased, the utility
would fall. While this happens a little (the best loss usually doesn’t
correspond to the largest Lipschitz constant), in most instances the
performance remains roughly the same. Why increasing noise does
in some cases not substantially increase expected response loss is a
subject for further investigation.

Finally, we observe that while the train and test dataset distribu-
tions tend to have different ERLs, mechanisms that perform better
6Training an exponential-mechanismNN requires fixing ε , as this affects the weighting
in the exponential mechanism and thus the expected response loss of the current
mechanism. There may be expected response loss functions for which the ordering of
utility functions by expected response loss is preserved as ε increases, and thus the
optimization generalizes across values of ε ; this is a subject for future work.
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Figure 5: The expected response loss of the Laplace (left) and
exponential (right) methods, averaged over 5 training runs.
The parameter k with the best training loss is designated
with a blue circle.We also as a baseline plot the performance
of the samemechanism, trainedwithout seeing the data and
thus relying only on the properties of the dataset distribu-
tion (dotted black). We plot the learnedmechanism’s perfor-
mance on the training dataset distribution (4-Gaussian mix-
tures, blue), and its generalization to a different distribution
(2-Gaussian mixtures, orange).

on the training set tend to also work better on the test set. This is
heartening, as it suggests that mechanisms trained on one distri-
bution of datasets may learn a generally-useful way of computing
the given query, and may generalize even if the true private dataset
does not exactly look like one of the training dataset draws.
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