
Learning to Play Connect Four from Game Images

Rotem Hemo, Beomjoon Kim, Yo Shavit, Aradhana Sinha

Abstract— We design a system to play Connect Four
given access to an image of a game board. We experiment
with three different deep-learning architectures: expert
policy estimation, state value estimation, and a hybrid
architecture that uses classical planning (MCTS). We
compare our trained networks with a variety of standard
players and discuss their relative strengths.

I. INTRODUCTION

In this paper we aim to learn to play Connect Four
given only the instantaneous image of a game board.
This problem requires a combination of machine vision
(to parse the board image into an actual board state)
and action planning (to choose the best action given a
state).

This problem requires both the ability to detect useful
features from a given board image, and the ability to
plan actions amid long horizon and large branch factor.

In 2016, Google DeepMind’s AlphaGo solved a
similar challenge for the game of Go. AlphaGo relied
on hand-tuned features of a board as an input to a neural
network, and focused on the planning problem [1].

Much like AlphaGo, our networks are trained in a
supervised fashion using ”expert” games between two
classical-AI computer players (two Monte-Carlo Tree
Search [4] players with half-second thinking time). We
train our network to learn to play using three different
deep-learning architectures:

1) A policy network to predict what action an
expert would take in the state

2) A value network to predict the likelihood that
an expert would win from the current state

3) An augmented Monte-Carlo Tree Search (AM-
CTS) which combines the policy and value net-
works with a classical tree-search method to
estimate the best next move

This problem is challenging in a few major ways.
First, extracting a meaningful playing strategy from
example experts that choose moves stochasticly is a
high-noise, low signal-strength problem. Second, we
are trying to learn an estimated likelihood of a far-
away future reward without knowing any meaningful
game logic. Finally, while Connect Four is technically

Fig. 1. Example Connect Four Board with beloved TA

a solved game [5], choosing a move visually adds
state estimation to the already difficult task of policy-
learning, a combination that has yet to be meaningfully
explored.

II. RELATED WORK

A. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS), also known as
UCT search, is a classical planning strategy which
asymmetrically expands the game tree to estimate the
quality of different moves [4]. On a high level, this tree
describes the set of ways the game could play out: ”if
red moves here, then black might move here, in which
case red should move here...” On a technical level, the
algorithm consists of a tree of nodes each representing
a game state, and each node can be ”expanded” by
taking a valid action at that node to reach a new game
state. The algorithm consists of two parts: descending
through the tree to determine which node to expand
next (the ”tree policy”), and then quickly estimating the
quality of the expanded node (the ”default policy”). In
classic MCTS, the ”tree policy” used is known as the



UCT heuristic (which encourages asymmetric expan-
sion of the tree), while the ”default policy” evaluates
the current state by randomly assigning actions to each
player until one side wins. The tree is expanded for
a fixed time limit, and when the time is up the most-
expanded action (which is likely the best-performing)
is chosen. The longer the algorithm is given to ”think”,
the more it will expand the tree and the better its choice
of move will be.

Our AMCTS algorithm improves on the MCTS
framework by using trained networks as heuristics [2].
Specifically, the ”tree policy” is augmented by warm-
starting the UCT estimate using the output of the value
network. The ”default policy”, rather than playing the
game out by generating moves randomly, generates
moves using the policy network, causing the simulation
result to much more closely correlate to the true quality
of the state.

B. AlphaGo

AlphaGo [1] is an artificial intelligence system de-
veloped by Google DeepMind to play Go. Like Con-
nect Four, Go is a zero-sum game where two play-
ers alternate moves until one wins. Go is legendarily
complicated, with a 19x19 game-board and frequently-
changing game state making it one of the most com-
plicated board games for humans (and AI) to play. To
overcome the difficulty of estimating the quality of a
game state, AlphaGo combines MCTS planning with
three trained networks: two policy networks (trained to
predict expert moves and used for the MCTS tree policy
and default policy respectively) and one value network
(trained to predict the estimate generated by the Al-
phaGo system in a reinforcement-learning scheme).

Our architecture bears similarity to AlphaGo in that
we too combine policy and value networks within the
framework of a classical MCTS planner to leverage
their differing strengths. The problem of this paper,
however, is fundamentally different: AlphaGo is pro-
vided with an array representing the game grid and
is only asked to generate an action, whereas we aim
to interpret the raw image of a game board and also
generate an action based on that interpretation. On
the other hand, Go requires a far more complex state
representation than Connect Four does, and has a
much longer horizon (many more moves are played
each game) and higher branching factor (many more
moves can be taken at any one time). Theoretically
this suggests that estimating the value of a current
position in Connect Four should be easier than it was

for AlphaGo, which had to train convolution networks
with dozens of layers over the course of several months.

C. Atari

In 2015, DeepMind achieved the first deep learning
model that learned to play a game (Atari 2600) better
than human players [3], using only the screen pixels
as an input and score gains as rewards. Their rein-
forcement learning model was a CNN trained with a
Q-function. Q functions represent the predicted future
reward for a given state and action.

The Atari paper and this Connect Four paper both
attempt to derive meaningful structure using only pixels
as input, and both aim to generate an action. The
training set of both involve learning from a series of
highly correlated states.

The horizon until a reward, however, is much longer
for Connect Four than it is for Atari. The reinforcement
learning methods described in the Atari paper do not
work for a game with a slightly longer horizon (e.g.
Montezuma’s Revenge). Hence, in our study we rely
on supervised training methods, and also integrate a
more robust classical planning strategy (MCTS).

Furthermore, in Connect Four the action used to
reach a state does not impact the value of the state. A
given board for a given player has the same potential for
future success regardless of how it was arrived upon.
For this reason, we chose to train value functions that
represent the predicted future reward given only a state.

III. METHODOLOGY

We take several different approaches to learning
to play Connect Four. Most of these methods are
motivated by approaches taken in AlphaGo, which
have already proven to be effective for a much more
complicated game.

First, we present a method that learns to map a board
image to an action, where an action is defined as the
board column chosen for the next token. This approach,
which we call a ”supervised policy” network, is similar
to AlphaGo’s Supervised Learning Policy Networks in
that we take as training data expert actions in various
states and perform supervised learning on the dataset.
The major difference is that AlphaGo’s input is a hand-
designed feature of the board, while we use an image of
the board. Also, unlike DeepMind, our lack of access
to a large database of expert game playthroughs forced
us to resort to using MCTS-vs.-MCTS playthroughs to
generate expert play data.

Second, we present a method that learns to map a
board image to a ”value” of the board, representing the



expected likely reward from that board position. This
”value” is highly dependent on the strategy used to play
the game - if one policy does well from a certain state,
and another does poorly, they should yield different
expected values. AlphaGo trains its value network to
predict the performance of its policy-network’s policy.
In our case, our supervised policy network is not as
reliable, so we resort to learning the ”value” of a state
given an MCTS player.

Lastly, we construct an augmented MCTS with
the learned value-network and policy-network used to
guide roll-outs (i.e. tree expansions). This too is similar
to the approach in AlphaGo, slightly simplified: we
linearly combine the heuristic estimate generated by
the value network with the value estimated by MCTS,
and then use the policy-network for roll-outs.

We trained all our networks using 4 TitanX GPUs
for 6 hours each.

A. Supervised Policy Network Learning

Our policy network consists of four convolutional
layers with kernel size of four, with no zero padding in
the first layer but with zero padding in the latter third
in order to preserve the original shape. We have max
pooling layers in between each of the convolutional
layers of size 4 by 4, followed by a dense layer that
outputs seven numbers that represents probability of an
expert player choosing each of the columns.

In order to generate a dataset for our policy network,
we played two MCTS players with 1 second time
limit against each other. We then took winning players’
trajectories from these game plays, and created the
dataset Dπ which takes the form

Dπ = {τi}ni=1,

τi = {s(i)t , a
(i)
t }Ht=1

where s, the state of the board is represented with 144
by 144 and 3 channels RGB image, and action a ∈
[0, 1]7 is a seven dimensional vector that represents the
probability that we should select one of the columns
in the board s. We trained on a total of 20,000 (s, a)
pairs.

We then feed the dataset D to our CNN to learn the
policy π that learns a mapping

π : R144×144×3 → [0, 1]7

by training the network as a classifier with cross-
entropy loss. The prediction accuracy was about 43%.

B. Supervised Value Network Learning

To represent a value network, we use the same archi-
tecture as the policy network but with two additional
layers, one that outputs linear activation and the last
output that has tanh activation. In order to train the
value network V , we play two MCTS players with 0.5
seconds time limit. Then, we take red stone player’s
trajectory, and create the dataset

DV = {τi}ni=1,

τi = {s(i)t , v
(i)
t }Ht=1

where v
(i)
t represents whether by at the end of the

episode, the red stone player won from the state s(i)t .
The total number of (s, a) pairs was 50000. If the red
agent has won, it takes a value of 1, and the agent loses,
then it takes a value of -1. Using this dataset, the value
network learns the mapping

V : R144×144×3 → [−1, 1]

by minimizing the mean squared error on the dataset
DV . Our resulting function estimates the expected
reward (from -1 to 1) of the red player from the current
board image.

C. Augmented MCTS

In order to utilize π and V that we learned, we
augment the standard MCTS with π as the rollout
policy and V to warm-start MCTS’s estimates of move
quality (and thus to guide the direction of the expansion
of the tree). The intuition here is that we can choose
better actions in a shorter amount of time by biasing
the MCTS search towards the more promising region
of the state space, as estimated by π and V .

More specifically, the Q function that the MCTS
algorithm uses to descend the tree is

Q(s, a) = γnt · V (s′) + (1− γnt)

∑nt

i=1 zi
nt

This equation initially warm starts with V (s′) when
we never previously explored the current state, and
eventually converges to

∑nt
i=1 zi
nt

as nt, the number of
time we have explored the state, increases.

We would like to use π to guide the game rollouts
that estimate the winner from the current board posi-
tion, but these rollouts must be stochastic to eventually
cover the whole search tree. Therefore we execute a
random action with probability q and execute the action
chosen by π with probability 1 − q. (In practice, we
chose q = 0.3.)



IV. EXPERIMENTS

Performance was assessed in three ways:
1) Game performance against computer players of

various difficulties
2) Performance under specific board scenarios
3) Analysis of hidden features.

A. Performance Against Other Computers

We play AIs against each other 20 times (alternating
which player goes first, as the first mover has an
advantage) to see how the players compare. Our base-
line players include:
• MCTS with computation times of 0.05, 0.2, 0.5,

1.0, and 2.0 seconds.
• Random Player that randomly chooses an action.
• Random Player that tends to play tokens in the

three center columns.
We play each of the above AIs against those we

generate:
• Value Network policy
• Policy Network policy
• Augmented MCTS with both the Value network

and the Policy network, with computation times
of 0.5, 1.0, and 3.0 seconds.

• Augmented MCTS with only the Value network,
with a computation time of 1.0 seconds.

• Augmented MCTS with only the Policy network,
with a computation time of 1.0 seconds.

B. Performance Against Specific Board Scenarios

To better understand the behavior of a given player,
we examine its decisions under very specific conditions
where the right move or moves are obvious to a human
player (See Figure 2). Through these specific situations,
we sought to cover the following scenarios:
• Obvious win for current player (horizontal, diag-

onal, vertical, varying columns)
• Obvious win for current player in two locations

(horizontal, diagonal, vertical, varying columns)
• Block obvious win for opponent (horizontal, diag-

onal, vertical, varying columns)
• Place a token that creates a trap.
• Place a token to make opponent not create a trap.
• The above scenarios in sparse and crowded envi-

ronments

C. Policy Learning

Out results suggest that the policy network per-
forms very well against all the other one-step players
(random, center-oriented, the value-network, and even

Fig. 2. (left) Example of a situation where Red should play a token
in the third column from the right to induce a winning scenario for
itself. A correct decision on this image involves the ability to see
forward three steps, and do more than simply avoid the opponent’s
win condition. (right) An example of where the obvious move is
to complete the vertical four-in-a-row. This particular scenario is
never seen in any of the training data since the MCTS players
overwhelmingly pick the center nodes earlier in the game. Correct
performance on this image indicates an ability to transfer learning
to new states.

short-thinking-time MCTS). It cannot, however, com-
pete with the longer computation time MCTS algo-
rithms, which can likely understand more complicated
sequences of future moves. Interestingly, it seems to
match the ability of some of the AMCTS algorithms.

When faced with specific scenarios, the policy net-
work is able to detect the right move to induce a
winning scenario for itself within the first three moves.
In the situation where an immediate win is not clear,
but column choice affects which player eventually wins
(players take turns avoiding placing a token in a column
that would induce a win for the other player), the policy
player is unable to distinguish the right move. That is,
it seems to be unable to count forward even the obvious
moves for ten steps.

D. Value Learning

Our value network performed very poorly (and likely
contributed to the rather poor performance of our
AMCTS player).

When faced with specific scenarios, the value net-
work does assign values of one to the immediate
win scenarios. It is unable to distinguish obvious win
scenarios that are 2-3 steps away. Value network does
not discriminate well between the relative probability
of success between boards that are crowded–roughly
between a third and two-thirds full. This is probably
why it performs poorly relative to the other strategies.



Fig. 3. A chart of comparisons of different players against each other. The value at each grid position is the fraction of games won by
”player 1” (y axis) against ”player 2” (x axis) when player 1 moves first.

E. Augmented MCTS

The AMCTS players which used both value and
policy networks significantly under-performed MCTS
players with the same amount of computation time. In
fact, the 1 second AMCTS seems to have even had
trouble beating the ”center-oriented” board-independent
strategy some portion of the time. This is attributable to
both the previously-described problems with the value
network, and the surprising effectiveness of MCTS
on Connect Four (further detailed in the Discussion
section).

However, if we restrict AMCTS to only using the
policy network (meaning that the tree-policy is classic
MCTS, and the board roll-outs are done using the
policy network) the policy-only AMCTS algorithm
actually outperforms most of the AMCTS solvers.
When given the first move advantage, this policy-only
AMCTS given 1-second processing time is able to

defeat an MCTS with 2 seconds of processing time
43% of the time (See Figure 3). This suggests that the
search tree using the policy network is being expanded
much more efficiently.

F. Analysis of Hidden Features

In order to have a better understanding of how the
network behaves, we analyzed the hidden layers of our
Supervised Policy Convolutional Neural Net (CNN).
Using the following approach, we analyzed the hidden
layers in order to find neurons that are in charge
of specific tasks. First, we feed the network with a
few hundreds of different board games and take the
top K active neurons. Second, we select the board
images which activated these neurons. Lastly, we find
the correlation between the active neuron to the board
image which triggered it.

As we can see in figure 4, for example, the activated
neuron ”recognizes” tokens which are blocked by a



opponent’s token. We can note the high activation level
by the concentration of white pixels, which represent
very high value.

Fig. 4. (Top) Two board images with tokens the are blocked by the
opponent tokens (Bottom) the corresponding neuron visualization
which shows that the neuron is activated by this specific configu-
ration.

V. DISCUSSION

One of the clearest observations about our AMCTS
algorithm is that it generally loses to a pure MCTS
algorithm with the same computation time. The sources
of this problem are two-fold, both due to an initial noisy
dataset, and the structure of Connect Four.

The noise in the initial dataset DV may have com-
promised the training. For the same board image, the
MCTS agent sometimes leads to a winning board and
sometimes it does not. We aggregated all the data
together, however, giving noisy labels, and making the
value network more difficult to train. For the boards
closer to the terminal position, this noise is significantly
smaller than the ones that are far away. This is why
in AlphaGo, their system played the first few steps of
the game using an expert-supervised network and then
followed it up with an RL policy network (and then
only took part of the data generated by the RL policy
network as the training data for their value network). In
our case, we did not have a computing resources that
Google DeepMind had, and have to use all the data for
every training step.

Further, it appears that in Connect Four the horizon
and branching factor are sufficiently small that expand-
ing nodes randomly is more time-efficient than ex-
panding nodes intelligently (making MCTS successful

over AMCTS with an equivalent thinking time). This
is precisely the opposite of the situation in AlphaGo
[1]. Basic MCTS fails miserably at Go because the
game has such a long horizon that random play-outs are
uncorrelated with the true likelihood of winning. There-
fore in AlphaGo, unlike in our system, using deep-
learned heuristics and rollout policy is a much more
time-efficient way to estimate likelihood of winning.

REFERENCES

[1] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., ... & Dieleman, S. (2016). Mastering
the game of Go with deep neural networks and tree search.
Nature, 529(7587), 484-489.

[2] Gelly, S., & Silver, D. (2007, June). Combining online and
offline knowledge in UCT. In Proceedings of the 24th interna-
tional conference on Machine learning (pp. 273-280). ACM.

[3] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[4] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., ... & Colton, S. (2012). A
survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in Games, 4(1), 1-43.

[5] Allis, L. V. (1988). A knowledge-based approach of connect-
four. Vrije Universiteit, Subfaculteit Wiskunde en Informatica.


